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* lon imaging can in principle enable direct assessment of the tissue stopping power and its variations due to inter-
fractional anatomical changes

* lon imaging can thus play a role not only as imaging technique for treatment planning but also for treatment
verification and adaptation in ion beam therapy

Treatment planning > Treatment delivery
Treatment Treatment
adaptation verification
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* lon imaging offers the promise of eliminating these inaccuracies by measuring the water equivalent thickness (WET)
and reconstructing the relative stopping power (RSP) of the object of interest

* In ion imaging, the forward-projection model describes the measured WET of the traversed object of interest as an
integral of the RSP along a certain concept of ion trajectory that depends on the detector configuration
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the ion radiography the ion image

* The a;j is the coefficient of the system matrix that describes the

intersection length/area/volume of the trajectory i (single ion or pencil
beam) with the voxel j

single ion or pencil beam
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e Detectors are mainly distinguished in list-mode and integration-mode configurations

 For integration-mode detectors, the concept of ion trajectory can be statistically described by the multiple
Coulomb scattering model Frrp
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Rinaldi et al. 2013 Phys. Med. Biol.
Meyer, Gianoli, ... etal. 2017 Phys. Med. Biol.

For list-mode detectors, the concept of ion trajectory can be statistically described by combining the multiple
Coulomb scattering model and the Bayesian inference, as the most likely path algorithm
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Bashkirov et al. 2016 Nucl. Instrum. Methods Phys. Res. A
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The concept of ion trajectory for different detector configuration plays a crucial role in the forward-projection model,
which is a foundationin ion imaging

WET # A x RSP; (t for “ground truth”)

However, in clinical scenarios the intrinsic inconsistencies of the forward-projection model are in the same order of
magnitude of the inaccuracies of the semi-empirical calibration of the X-ray CT

* Relying on Monte Carlo simulations, the normalized f;fncfn,&mj W

root mean square error between the ion radiography

and the forward-projection of the ground truth ion
CT image is 1-2.5% for list-mode detector
configuration and up to 2.5-5% for integration-mode
detector configuration

Gianoli et al. 2020 Phys. Med. Biol.
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« Tomographicimage reconstruction is applied to several ion radiographies, with projection angles covering 180°

e The ordered subsets simultaneous algebraic reconstruction technique (OS-SART) coupled with total variation
superiorization currently represents the state-of-the-artin ion imaging!%3

. Information redundancy mitigates the intrinsicinaccuracies of the forward-projection model*
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vector of measurements WET
(for eachion/pencil beam)

system matrix A of the ion trajectories
(foreachvoxel, for eachion/pencil beam)

Penfold et al. 2010 Med. Phys. 2Meyer et al. 2019 Phys. Med. Biol. 3Meyer et al. 2021 Phys. Med. Biol.
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* The ordered subsets (OS) approach is introduced to accelerate numerical image reconstruction and reduce the memory
requirement for reconstruction

* In OS approach, instead of accessing all projections simultaneously for updating the image, the image is updated relaying
on a subset of projections

* ART can be interpreted as OS-SART with only one projection per subset and SART can be interpreted as OSsSART with only
one subset

* An update performed using a single
subset is called a sub-iteration

* An iteration is completed when all
subsets have been processed once

e The convergence acceleration is
expressed in terms of number of
iterations (not sub-iterations)
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The idea of OS was originally proposed for emission tomography and then transferred to transmission tomography (the
SART and the ML-EM produce the maximum likelihood estimate in the Gaussian and Poisson data, respectively)

The subset of projections S(s) is employed for updating of the image, and this update, together with a different subset of
projections S(s + 1), is then used for calculatingthe next update

ey —T >
f(s) -a;i —g
dieses)| %ij ( L

2; Aij

The best ordering of the subsets is defined according to the maximum angular distance (“as orthogonal as possible”) from
the previously used projections

F+D = () —

This ordering further accelerates convergence as compared to sequential or random orderings

The increased convergence speed (in function of the number of iterations) and the reduced memory requirement
(due to a reduced dimension of the system matrix) comes at the cost of an increased noise of the reconstructed

Image Hudson| H. M.| & Larkian. S. |1994|.Acce|erated imaie reconstruction usiniordered
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* Because of the intrinsic inconsistencies of the forward-projection model, the optimal solution minimizing the objective
function of the tomographic image reconstruction algorithm is not necessarily the solution that best reconstructs the
ground truth image

 The fundamental approach for the mitigation of the intrinsic inconsistencies of the forward-projection model is to stop
the tomographic image reconstruction algorithm before the solution diverges (albeit with a lower objective function),

thus being referred to as semi-convergence

 Another approach is to use superiorization techniques to shift the solution at each iteration to one that is superior to the
current solution

* Asuperior solutionis defined in terms of a certain merit function ¢

algorithm xR+l = £ (x")

superiorized algorithm 2 = f(xk + Bv¥) sothat ok + Bv’) < p(xh)
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* Intransmissionimaging(i.e., ionimaging), the merit function ¢ is typically the total variation

Xit1,j-1

* Foratwo-dimensional (2D) image representationin i and j of the image vector x¥ is defined as:

-1, i i+1,

kY _— k k k k
(p(x ) N 2 Z\/ (xl+1i.] - xli])2+(xll.]+1 a xl’-])z xi—1j+1 x
i ,

Xi+1,j+1

«  B,v¥is the perturbation term, with B real non-negative numbers (typically 0 < B, < 1) and v* the perturbation vector,
typically defined as non-ascendingdirection of the merit function ¢ at x*

k_ _ ch(xk) _ sk
IV (x|, sl

v

« The perturbation vector is calculated as the negative of the normalized sub-gradient s* (generalized concept of

derivative for convex functions which are not necessarily differentiable) of the total variation @(x*) for the image

vector xk

Penfold, S. N., Schulte, R. W., Censor, Y., & Rosenfeld, A. B. (2010). Total variation superiorization schemes in
proton computed tomography image reconstruction. Medical physics,37(11),5887-5895.
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 Another approachis to use regularization techniqueto add a penalty function to the objective function

The penalty function enforces a desired feature on the reconstructed image
Xmin = argmin, F (x)+A¢(x)

* ¢(x)isthe penalty function (i.e., total variation or smoothness-related functions) and A is a parameter controlling its
weighting

o Th I . . h h bI I Defrise, M., Vanhove, C., & Liu, X. (2011). An algorithm for total variation
€ regu arlzat|0n C angeSt e pro em: regularizationin high-dimensional linear problems. Inverse Problems, 27(6), 065002.

* The optimal value of A depends on the level of noise in the data
* A toosmall under-regularizes (i.e., not substantiallyimprove image quality)

* A too large over-regularizes, resulting typicallyin an oversmoothed image
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 The superiorization of the algorithm for tomographic image reconstruction introduces a “perturbation” of the solution in
tomographicdomain in order to reduce, and not necessarily minimize, a merit function ¢ (i.e., the total variation)

 The superiorization changes the algorithm by adding a shifting step but it does not change the problem!

A. Reference
(Ground truth)

set k=0,1=0, 8 =1,
while repeat for each subset over the requested number of cycles do

if ||s*|| = 0 then
k

k &
V= —
[ls*]]

else
| v = sk

N )
th | Most likely path
) Proton CT

while loop do
set y* = =% + Bro*;
if ®(y*) < (%) then

o* = y#;
set loop = false;
end
Br = Bi/2; _
;gg . Py is the operator that updates
k= k1 the OS-SART algorithm
end

Meyer, S., Pinto, M., Parodi, K., & Gianoli, C.(2021). The impact of path estimates initerative
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* Inintegration-mode detector configuration, the Bragg peak signal for each pencil is discretized according to the multiple
layers (i.e., channels) or according to the multiple initial energies in a single layer

* Due to lateral inhomogeneity traversed by the pencil beam, the Bragg
peak signal results in a linear combination of elementary Bragg peak
signals

 The Bragg peak of the component with the larger WET (i.e., the shorter range) takes advantages from the Bragg peaks of
the components with smaller WET




towie- | ( L ERIR: i'!z!

MAXIMILIANS-

AT for pencil beams g

* Linear decomposition’? (inverse problem) is applied to retrieve the WET histogram as WET occurrence for each WET
component by solving the system of linear equations BP = LUT * WET

a

- BPis the discretized Bragg peak signal

11.8

e WET is the unknown vector of WET occurrences |

11.4

12

e LUT is the look-up-table of individual Bragg peak
signals for each WET component

0.8

e The least square optimization is based on Euclidean

0.6
distance minimization

0.4

WET components (channels)

0.2

argminW% |LUT « WET — BP||2
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A 4

. WET components
* An histogram of WET occurrences for each WET component

is obtained 1Krah et al. 2015 Phys. Med. Biol.
2Meyer et al. 2017 Phys. Med. Biol.
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integration-mode

* Defining p;; the WET components and w;, the WET occurrences, the tomographic image reconstruction for integration-
mode detector configuration dealswith the additional channel dimension of the WET histogram (WET,,)

* The typicalapproach,the WET histogramis reduced to a single WET component
 WET; = max{p;;} the WET componentwith maximum WET occurrence (WET,,,4. or WET,,,,)

« WET; = mean(p;,w;) the weighted averaged WET components (WET ...,
WETl - z Cll]RSP]
J

 Therefore, the integrationlineis assumed as straight or coincidingto the mean ion trajectory of the pencilbeam

* Analytical or numerical algorithms for tomographicimage reconstruction are applied
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Alternatively, WET);. is handled within numerical tomographicimage reconstruction (ART&SART)

e WET componentsand WET occurrents are entirely exploited
 Theintegrationlineis defined accordingto the scattering model (conical Gaussian) for each WET component

« The WET components are spatially assigned (the mean ion trajectory is valid only for WET,,, and WET,..,.)

Charnnel k Channel k

"
pll ||

M|
| ||
II
i h

Integration line, i |I|— Integration line, i
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e The SART algorithm s considered for numerical tomographic image reconstruction

gi— X ff
2 %j

2; aij

 The SART algorithmis modified to handle the additional channel dimension

mix = z Wik Q(ik)j gi = Z WirYik
k k

where a j describe the conical Gaussian for each channel
(indexing j the pixel/voxel, k the channeland i the measurement)




MAXIMILIANS-
UNIVERSITAT
MUONCHEN

Ground truth

SART WET,,;,,

SART WET,,.
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 Comparison between list-mode and integration-
mode detector configurations

e The self-consistent ~ tomographic image
reconstruction pretends to know the exact
trajectories of the protons (to overcome the ill-
posed nature of the inverse problem in ion
imaging)

ic image reconstruction for
integration-mode detector configuration

SART self-consistent

SART list-mode list-mode

SART WET, . SART WET, ...

Gianoli etal.2019 Phys. Med.
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e The MLP is the estimation of the proton trajectory that can be easily adopted in the system matrix of numerical
reconstruction

* Alternatively, the estimation of the proton trajectory can be used to implement a “modified” FBP, based on a distance-
driven binning of projections for individual source positions

Jo,

Rit, S., Dedes, G., Freud, N., Sarrut, D., & Létang, J. M. (2013). Filtered backprojection
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 The projectionis binned (subdivided) according to the source to detector distance

 The binningprovides the sinogram an additional dimension, whose size is defined by the number of bins

> O > O
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detector configuration

 The filtering, enabled by the distance-driven binning, is applied to each binned projection of the sinogram (without
filtering the method is simply a back-projectionalongthe MLP)

 The back-projectionrespects the binning,\\
7/
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<
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Ramp filter - Back
as convolutionin spatial . .
domain projection
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* Analytical calculation of the sinogram or Radon Transform where each projection is calculated as line integrals of the image
intensity

* Choose the image (phantom.png)

* Choose the number of projection lines (np = 128) and the number of projection angles (n9 = 180 with spacing AY =1
degree)

* Forloop over projection angles

* Rotate the image matrix according to the projection angle and integrate the image matrix along the straight
integrationlines (instead of rotating the integration lines)

* Store the resulting vector as a column in the sinogram matrix
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e Analytical calculation of the system matrix

* Choose the number of projection lines (np = 128) and the number of projection angles (n9 = 180 with spacing AY =1
degree)

* Forloop over projection angles
* Forloop over projections
* Createimage matrix made of a column in correspondence of the projection
* Rotatethe image matrix according to the projection angle
e Store the resulting vector as a column in the system matrix

* Analytical calculation of the sinogram or Radon Transform as forward-projection of the image to be compared to the
previous sinogram

* Are thei different? Whi?
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* Implementation of the numerical tomographicimage reconstruction algorithm SART
e Take a sinogram and the system matrix
* Initialize the vectorized image as vector of zero

* Forloopoveriterations

e Updating formula of the SART

Back projection (vector of length J)

\ 4




