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• Analytical image reconstruction is based on the continuous form of the Radon Transform

• The Fourier Slice Theorem, provided with the Nyquist theorem of sampling, enables the implementation and application of
analytical reconstruction algorithms (i.e., the filtered back-projection)

Outlook from the previous lecture

𝜗

𝜌

𝑥

𝑦

Radon Transform

sinogramimage

∆𝜗 = 𝑎𝑟𝑐𝑡𝑎𝑛
1

𝑁
2

𝑁 pixels of the image

መ𝑓𝜌(𝑤𝑥, 𝑤𝑦) = න

−∞

+∞

𝑅(𝑓)𝑒−2𝜋𝑖(𝜌𝑤𝜌)𝑑𝜌 = ෠𝑅(𝑤𝜌)



• Numerical image reconstruction does not rely on the Fourier Slice Theorem and the Nyquist theorem of sampling

• The image and the sinogram have not necessarily to be continuous, thus enabling the reconstruction in presence of
geometrical constraints

• Numerical image reconstruction can be described as the solution of a linear system of equations

• I equations, one for each projection
• J unknowns, one for each pixel

Numerical image reconstruction
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• Numerical image reconstruction requires the description of the imaging system model in terms of geometry of the
integration lines

• The imaging system model is described in the system matrix of the numerical reconstruction 𝐴 = {𝑎𝑖𝑗}, whose size is 𝐼 × 𝐽

• The integration line is traced as intersection length/area/volume with the image pixels/voxels

Numerical image reconstruction
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The system matrix

• Matrix construction for each integration line and for each projection angle
• Vectorization or linearization of this matrix
• Assembly in the system matrix
• System matrix transposition



• The forward-projection of the image is calculated as a matrix-vector product of the system matrix and the “vectorized”
image

𝑔 = 𝐴𝑓

a11 a21 … aI1

a1J a2J aIJ
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𝑓 = 𝐴𝑇𝑔

a11 a21 … aI1

a1J a2J aIJ
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• The back-projection of the sinogram is calculated as a matrix-vector product of the transposed system matrix and the
“vectorized” sinogram
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• Several computational methods aim at solving linear systems of equations

• Least square optimization for overdetermined system of equations (more equations than unknowns)

• Numerical (iterative) optimization

Numerical image reconstruction
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• The physical properties of the object of interest cause the attenuation of X-ray beams, described through attenuation
coefficients μ, assumed to be constant for different energies (and assuming a mono-energetic X-ray beam)

• The projection expresses the intensity reduction due to photon attenuation in the object of interest

• The attenuation is described by Lambert Beer’s law:

• The tomographic image reconstruction of the attenuation coefficients μ is enabled by the Lambert Beer’s law that models
the projection as a line integral of the physical variables
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Parallel geometry

• Infinite center of projection

• Fixed projection angle for the projection line, parallel 
integration lines

Imaging system geometry
in X-ray CT
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Fan geometry

• Finite center of projection

• Variable projection angle for the projection line, diverging 
integration lines
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Imaging system geometry
in X-ray CT
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• The reconstruction consists in solving a system of I equations, where I is the number of boundaries (the number of
projections), relying on the constants aij describing the imaging system model (the system matrix)

• Each projection is interpreted as an hyperplane in a J-dimensional space, where J is the degrees of freedom (the number
of pixels/voxels of the image and thus, the number of the unknowns)

Algebraic Reconstruction 
Technique

• If existing, the intersection of the I hyperplanes represents 
the solution of the system of equations

• The dimension of the hyperplane is J-1
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• Simplified imaging system geometry: 2 unknowns and 2 parameters

• The lines, or 1-dimensional hyperplanes, represent the boundaries (i.e. the projections)

• The intersection point represents the solution (i.e. the image)

𝑎11𝑓1+ 𝑎12𝑓2 = 𝑔1

𝑎21𝑓1+ 𝑎22𝑓2 = 𝑔2

𝑔1

𝑓1 𝑓2
𝑔2

Algebraic Reconstruction 
Technique

(𝑓1 , 𝑓2)



• Define 𝑔1 = 𝑔1 as the scalar product (dot product) of an arbitrary vector Ԧ𝑓 laying on the line by the unit vector 𝑤1 (or

project an arbitrary vector Ԧ𝑓 laying on the line along𝑤1)

• Describe the projection 𝑔1 as a line (i.e., the yellow line)

• Define the vector 𝑎1 as the 2 coefficients of the system matrix
relevant to the projection

• Express the unit vector 𝑤1 as the vector 𝑎1 (perpendicular to
the line by construction) divided by its modulus

𝑎11𝑓1+ 𝑎12𝑓2 = 𝑔1

𝑤1 =
𝑎1

𝑎1 ∙ 𝑎1
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𝑔1 = 𝑔1 = Ԧ𝑓 ∙ 𝑤1 =
𝑎1 ∙ Ԧ𝑓

𝑎1 ∙ 𝑎1

𝑓(1)
𝑓(0)

Ԧ𝑓

Algebraic Reconstruction 
Technique

𝑔1



• Substitute  𝑤1

• Define 𝑓(0) as a vector not laying on the line

• Define 𝑓(1) as a vector laying on the line, as
the solution lays on the line

• Express the update vector as difference

between 𝑓(1) and 𝑓(0)

𝑎11𝑓1+ 𝑎12𝑓2 = 𝑔1

𝑤1

𝑓(1)
𝑓(0)

𝑓(0) − 𝑓 1 = (𝑓 0 ∙ 𝑤1 − 𝑔1) ∙ 𝑤1

Ԧ𝑓

𝑓(1) = 𝑓(0) − (𝑓 0 ∙ 𝑤1 − 𝑔1) ∙ 𝑤1

𝑓(1) = 𝑓(0) − (𝑓 0 ∙
𝑎1

𝑎1 ∙ 𝑎1
− 𝑔1) ∙

𝑎1

𝑎1 ∙ 𝑎1

Algebraic Reconstruction 
Technique

𝑓(1) = 𝑓(0) −
𝑓0 ∙ 𝑎1 − 𝑔1

𝑎1 ∙ 𝑎1
∙ 𝑎1

𝑔1



• The update vector moves perpendicularly within boundaries (the Kaczmarz method)

• Additive update of the image, after the projection has been considered (projection line per projection line)

• One iteration of ART is completed when all the projections have been considered
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(𝑓1 ,𝑓2)
𝑛

(𝑓1,𝑓2)
𝑛+1

𝑔2

Algebraic Reconstruction 
Technique



𝑓(𝑛+1) = 𝑓(𝑛) −
𝑓(𝑛) ∙ 𝑎𝑖 − 𝑔𝑖

𝑎𝑖 ∙ 𝑎𝑖
∙ 𝑎𝑖

• The update vector is calculated for each projection i, defined by 𝑎𝑖

Initialization 𝑓(0)

for it = 1: nIterations

for i = 1: I

update estimation

end

end

𝑎𝑖 = 𝑎𝑖1 , 𝑎𝑖2 , … , 𝑎𝑖𝑁

Algebraic Reconstruction 
Technique (ART)

Forward projection (scalar)

Back projection (vector of length J)



• Additive update of the image, contemporaneous for all the projection lines

• Under ideal conditions, one iteration of SART coincides with I updates of the ART

Initialization 𝑓(0)

for it = 1: nIterations

update estimation

end

𝑓(𝑛+1) = 𝑓(𝑛) −

σ𝑖 𝑎𝑖𝑗 ∙
𝑓(𝑛) ∙ 𝑎𝑖𝑗

𝑇
− Ԧ𝑔

σ𝑗𝑎𝑖𝑗

σ𝑖 𝑎𝑖𝑗

Forward projection (vector of length I)

Simultaneous Algebraic 
Reconstruction Technique (SART)

Back projection (vector of length J)

Andersen, A. H., & Kak, A. C. (1984). Simultaneous algebraic reconstruction technique (SART): a 
superior implementation of the ART algorithm. Ultrasonic imaging, 6(1), 81-94.



• Image reconstructed according to Simultaneous Algebraic Reconstruction Technique (SART) by setting the number of
projection angles nϑ = 180 with spacing Δϑ = 1 degree and 10 degrees, the number of projection lines nρ = 128 and the
number of iterations equal to 40

𝑥

𝑦

𝑥

𝑦
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Simultaneous Algebraic 
Reconstruction Technique

Δϑ = 10 degrees



• The energy source is the β+ emitter and concentrates in the object of interest due to biological properties of the
radiotracer

Principle of positron emission 
tomography

• The physical effect relevant to
PET imaging is the β+ emission
inside the object of interest

• Two synchronized crystals
detect the two annihilation
photons in time coincidence
(“the count”)

• The integration line is defined along the Line of Response (LOR) as the line along which the
count is detected

• The projection line is defined by parallel (co-planar or not) integration lines connecting
different crystals

https://multimodalneuroimaging.wordpress.com



• The counts are organized in the sinogram, as a function of projection lines and projection angles

The imaging system geometry
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• The synchronization of crystals belonging to different rings
defines an oblique sinogram

• The projection line is defined by parallel but not co-planar
integration lines

• The PET scanner is composed by several rings of crystals that can be synchronized or not

• The synchronization of crystals belonging to the same ring defines the direct sinogram

• The projection line is defined by parallel and co-planar integration lines

• The sinogram is defined by co-planar projection lines

1 2 3 4

The imaging system geometry

https://radiologykey.com



• The “2D-mode” is defined for direct sinograms and
averaged oblique sinograms ( = average)

• 2D tomographic image reconstruction

• The “3D-mode” is defined for direct and oblique
sinograms

• 3D tomographic image reconstruction
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• The “michelogram” displays the crystal synchronization and thus, the acquisition/reconstruction modality

The imaging system geometry

Defrise, M., Kinahan, P. E., & Michel, C. J. (2005). Image reconstruction algorithms 
in PET. In Positron Emission Tomography (pp. 63-91). Springer, London.



• A→ example of 3D-mode michelogram

• B→ direct sinograms and averaged oblique sinograms (Φ=0)

• C, D → oblique sinograms, +Φ and – Φ

• E, F → oblique sinograms, +Ψ and – Ψ

The imaging system geometry

B

C

D

E

F

Fahey, F. H. (2002). Data acquisition in PET imaging. Journal of 
nuclear medicine technology, 30(2), 39-49.

+Φ -Φ

+Ψ - Ψ



• The observations in PET imaging are the measurements of the annihilation photons in coincidence, subsequent to
radioactive decay

• “Indirect” observation of the cause

• Poisson statistics describe random, independent events that occur at a fixed mean rate λ, as radioactive decay

Poisson noise in PET imaging
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• Each projection is a Poisson variable

• The sinogram is intrinsically affected
by Poisson noise

imagesinogram



• Numerical image reconstruction aims at finding the image that satisfies:

• Numerical image reconstruction is based on the Poisson probability model for radioactive decay

Poisson noise in PET imaging

The probability of observing k counts in a certain
interval of time is defined by λ, or mean rate of
counts, according to:
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• The update estimation defines the tomographic reconstruction algorithm

• The Maximum Likelihood (ML) approach is a method of estimating the parameters of a statistical model (i.e., the
Poisson probability model for radioactive decay) given the observations (i.e., the number of counts detected along
the LOR)

• The update estimation is based on the Expectation Maximization (EM) of the likelihood function, which express the
probability to observe the measured projections g if the reconstructed image is f

Maximum Likelihood Expectation 
Maximization (MLEM) algorithm
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• To simplify the maximization of L, the natural logarithm of the function is taken (the log-likelihood)

• For x>0 (the probability), both y=x and y=ln(x) are minimized for x→0

ln(a ∙ b)=ln(a)+ln(b)ln(ab)=b∙ln(a) ln(a/b)=ln(a)-ln(b)
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Maximum Likelihood Expectation 
Maximization (MLEM) algorithm



• To simplify the maximization of L, the not observable variable𝑥𝑖𝑗 (expectation or expected projection) is introduced

𝑥𝑖𝑗 =
𝑎𝑖𝑗𝑓𝑗

σ𝑗 𝑎𝑖𝑗𝑓𝑗
𝑔𝑖 so that 𝑔𝑖 = σ𝑗 𝑎𝑖𝑗𝑓𝑗 = σ𝑗 𝑥𝑖𝑗

• 𝑥𝑖𝑗 expresses the number of counts detected along the LOR i and emitted from the pixel j

• The projection is expressed in function of 𝑥𝑖𝑗

• The term independent by 𝑓𝑗 is deleted from the maximization
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Maximum Likelihood Expectation 
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𝑙𝑛 𝐿 𝑔, 𝑓 = −෍

𝑖

෍

𝑗

𝑎𝑖𝑗𝑓𝑗 +෍

𝑖

𝑔𝑖 𝑙𝑛෍

𝑗

𝑎𝑖𝑗𝑓𝑗 −෍

𝑖

ln 𝑔𝑖! =

=෍

𝑖

෍

𝑗

−𝑎𝑖𝑗𝑓𝑗 + 𝑥𝑖𝑗𝑙𝑛 𝑎𝑖𝑗𝑓𝑗 − ln 𝑥𝑖𝑗! =

𝑙𝑛 𝐿 𝑔, 𝑓 = −෍

𝑖

෍

𝑗

𝑎𝑖𝑗𝑓𝑗 +෍

𝑖

෍

𝑗

𝑥𝑖𝑗 𝑙𝑛෍

𝑗

𝑎𝑖𝑗𝑓𝑗 −෍

𝑖

ln 𝑔𝑖! =

𝑙𝑛 𝐿 𝑔, 𝑓 = −෍

𝑖

෍

𝑗

𝑎𝑖𝑗𝑓𝑗 +෍

𝑖

෍

𝑗

𝑥𝑖𝑗ln 𝑎𝑖𝑗𝑓𝑗 −෍

𝑖

ln ෍

𝑗

𝑥𝑖𝑗 ! =

Maximum Likelihood Expectation 
Maximization (MLEM) algorithm

Step by step



• The maximization of L is based on the annulling of the first derivative

• The updating formula of the ML-EM algorithm is derived accordingly
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• Interpretation of the multiplicative updating formula of the ML-EM algorithm

Image at next 
iteration

Image at current 
iteration

Estimated number of counts along the LOR i as 
forward-projection of the image at current iteration

Error along the 
LOR i

Weighted average of the 
back projected error

Maximum Likelihood Expectation 
Maximization (MLEM) algorithm



• The noise on the projections makes the tomographic image reconstruction in PET imaging an ill-posed inverse problem

• The iterations of the ML-EM algorithm must be stopped before image convergence due to noise break-up

• This translates into a trade-off between noise and accuracy (spatial resolution) which affects clinical applications

Outlook

Adapted from Wieczorek, Herfried. "The image quality of FBP and MLEM reconstruction“. Physics in Medicine and Biology, 55.11 (2010).

FBP, different windowing of the Ramp filter ML-EM, different number of iterations
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Accuracy 
(i.e., mean
of a 
uniform 
region)

Noise break-up

Iteration number 

Noise (i.e., 
standard 
deviation of 
a uniform 
region)

Iteration number 

Optimal iteration 
number

Ideal accuracy

Optimal iteration 
number



• The accuracy embeds information about spatial resolution

• An increase in accuracy (i.e., mean of a uniform region) corresponds to an increase of spatial resolution (i.e., full
width at half maximum)

• The missing area/volume ( ) of the object is known as “partial volume” and it is one of the most important
limitations in quantitative PET imaging (i.e., quantification of tumor uptake)

Outlook

Iteration number 

Object

Background



• Numerical image reconstruction makes use of the discrete form of the Radon Transform (the sinogram)

• Numerical image reconstruction algorithms are simply enabled by the modeling of the imaging system geometry in a
system matrix

• The choice of analytical or numerical reconstruction algorithms depends on the specific application in terms of geometry
of the projection lines, angular coverage and angular sampling (i.e. geometrical constraints), noise level on the projections
(i.e. dosimetric constraints)

• If the continuity hypothesis of the image and the sinogram is matched and the noise level is low, analytical image
reconstruction algorithms can be considered

• Otherwise, more flexible (but more expensive under a computational point of view) numerical image reconstruction
algorithms are preferred

Outlook


