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Abstract

cAMP plays a pivotal role in control of cell movement, differentiation and response to stress in all phases of the
Dictyostelium life cycle. The multitudinous functions of cAMP require precise spatial and temporal control of its
production, degradation and detection. Many novel proteins have recently been identified that critically modulate
the cAMP signal. We focus in this review on the properties and functions of the three adenylyl cyclases and the three
cAMP-phosphodiesterases that are present in Dictyostelium, and the network of proteins that regulate the activity
of these enzymes. We also briefly discuss the two modes of detection of cAMP.

Functions of cAMP

The evolution of signalling in Dictyostelium discoideum
has particularly favoured cAMP as jack of all trades.
The manifold usages of cAMP are summarized in
Figure 1 and can be broadly subdivided into its role as
first messenger outside the cell and second messenger
inside the cell. Outside, cAMP acts as chemoattractant,
which coerces amoebae to convert from solitary preda-
tors into gregarious community members (Konijn et al.,
1967). Outside, cAMP also acts on gene regulation to
induce the alterations in phenotype that are required for
chemotactic aggregation and for initiation of prespore
differentiation (Gerisch et al., 1975; Kay, 1982; Schaap
and Van Driel, 1985). As inhibitor of terminal stalk cell
differentiation, cAMP plays a critical role in cell-type
choice (Berks and Kay, 1988; Hopper et al., 1993a).
Inside, cAMP triggers initiation of development

(Schulkes and Schaap, 1995; Mann et al., 1997), matu-
ration of spores and stalk cells (Harwood et al., 1992;
Hopper et al., 1993b; Mann and Firtel, 1993) and
maintenance of spore dormancy (Van Es et al., 1996).
Inside, cAMP also mediates resistance to osmotic stress
(Schuster et al., 1996) and contributes to the process of
orientation in chemotactic gradients (Wessels et al.,
2000).

cAMP synthesis

Until the early 90’s the regulation of cAMP production
could only be analysed biochemically. cAMP is tran-
siently synthesized upon stimulation of aggregation
competent cells with cAMP. The accumulation of

cAMP peaks at 2 min (Devreotes and Steck, 1979) and
requires the heterotrimeric G-protein G2 (Kesbeke
et al., 1988; Kumagai et al., 1989). In cell lysates, cAMP
synthesis requires GTPcS; the cyclase itself is associated
with the membrane fraction, but requires a factor from
the cytosol to be active (Theibert and Devreotes, 1986).
Genetic screens identified a mutant, synag 7, that does
not synthesize cAMP and can only aggregate when
mixed with wild-type cells. The defective gene was later
identified as CRAC (cytosolic regulator of adenylyl
cyclase), the essential cytosolic factor for adenylyl
cyclase activation (Insall et al., 1994; Lilly and Dev-
reotes, 1994).
The gene for the cAMP-activated adenylyl cyclase

AcaA was identified by PCR through its homology with
the mammalian cyclase domains, and this screen also
yielded a second gene, AcgA, that was only expressed in
spores (Pitt et al., 1992). The third adenylyl cyclase,
ACB, was detected biochemically in mutants with a
double lesion in acaA and rdeA, an essential protein for
activation of the intracellular cAMP-phosphodiesterase
RegA (Chang et al., 1998; Kim et al., 1998a; Thomason
et al., 1999). The ACB gene, AcrA, was identified from a
mutant that was defective in spore maturation (Soder-
bom et al., 1999).
The catalytic domains of ACA, ACG and ACB

classify them as typical eukaryote class III cyclases
(Danchin, 1993). This type of cyclase can either be
soluble with one or two catalytic domains, membrane-
associated with a single transmembrane domain and one
catalytic domain or membrane-associated with 12
transmembrane (12TM) domains and two catalytic
domains. The catalytic domains are actually half-sites
of the catalytic centre and need to form hetero-
or homodimers to be active. Optimal juxtaposition of
the two domains is usually part of the activation process
of the cyclases (Hurley, 1998).
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Adenylyl cyclase A

ACA is an enzyme with 12TM domains and two cyclase
domains. In vertebrates, this type of enzyme is com-
monly activated by serpentine receptors that couple to
heterotrimeric G-proteins. ACA is expressed at high
levels during aggregation. During slug formation ex-
pression is downregulated at the posterior region and
becomes almost exclusively restricted to the tip (Pitt
et al., 1992; Verkerke-van Wijk et al., 2001). ACA
activity is regulated by a positive and a negative
feedback loop, which causes some starving cells to
spontaneously produce and secrete cAMP at regular

intervals. The positive loop is caused by self-stimulation
of ACA by extracellular cAMP, while the negative loop
is due to a cAMP-induced adaptation process (Martiel
and Goldbeter, 1987; Tang and Othmer, 1994). cAMP-
induced cAMP secretion in neighbouring cells causes
propagation of the original pulse as a spiral or concen-
tric cAMP wave through the cell population and
chemotactic movement towards the signalling source.
The regulation of ACA activity is remarkably complex
and requires some factors for which there are as yet no
counterparts in regulation of the vertebrate 12TM
adenylyl cyclases (Figure 2).
The initial steps involve activation of the heterotri-

meric G-protein G2 by occupied cAMP receptors and
formation of a free bc dimer (Lilly et al., 1993; Wu
et al., 1995). In analogy to vertebrate systems, where the
bc dimer directly binds to and activates PI3-kinase
(Schwindinger and Robishaw, 2001), the Dictyostelium
bc dimer is also supposed to activate a PI3-kinase,
which converts the membrane lipid phosphatidyl ino-
sitol [4, 5] bisphosphate (PIP2) into the CRAC binding
site phosphatidyl inositol [3, 4, 5] trisphosphate (PIP3).
PIP3 then recruits CRAC from the cytosol to the plasma
membrane by binding to its pleckstrin homology do-
main (Dormann et al., 2002). At this location CRAC
can participate in ACA activation. This is not the whole
story because ACA activation also requires the small G-
protein RasC (Lim et al., 2001), a Ras interacting
protein, Rip3 (Lee et al., 1999), the Ras nucleotide
exchange factor, RasGEF (Insall et al., 1996), the
MAPkinase ERK2 (Segall et al., 1995) and a novel
factor Pianissimo (Chen et al., 1997). How these pro-
teins interact with each other and with ACA is not clear.

Fig. 1. Functions of intracellular and extracellular cAMP.

Fig. 2. Schematic of the regulation of adenylyl cyclase A: Binding of cAMP to the serpentine receptor cAR1 induces dissociation of the

heterotrimeric G-protein, G2, into its a and bc subunits. The bc subunits induce activation of phosphatidylinositol-3 kinase (PI3K) in a manner

that is not yet understood. PI3K converts phosphatidyl inositol [4, 5] bisphosphate (PIP2) into phosphatidyl inositol [3, 4, 5] trisphosphate (PIP3).

PIP3 binds to the pleckstrin homology domain of CRAC, the Cytosolic Regulator of Adenylyl Cyclase and recruits CRAC from the cytosol to

the plasma membrane, where it can participate in adenylyl cyclase A (ACA) activation. A set of proteins, including the MAPkinase, ERK2, the

small G-protein, RasC, the guanine nucleotide exchange factor, RasGEF, the Ras interacting protein, Rip3, and a novel protein, pianissimo (Pia)

are also required for ACA activation. The interactions of these proteins with each other and with CRAC and ACA have not yet been clarified.

cAMP produced by ACA is rapidly secreted to further activate ACA in a positive feedback loop. Binding of cAMP to cAR1 blocks ACA

activation via a negative feedback loop, that is little understood. Extracellular cAMP is degraded by the phosphodiesterase PdsA, which

terminates both loops and returns cells to the basal excitable state.
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The adaptation process of ACA has also not been
resolved. Mammalian adenylyl cyclases are negatively
regulated by inhibitory G-proteins (Hamm, 1998) or the
activation process is terminated by receptor desensitiza-
tion. In the case of serpentine receptors this is usually
achieved by phosphorylation of the carboxy-terminal
cytoplasmic tail and binding of arrestin (Ferguson and
Caron, 1998). cAMP receptors are also phosphorylated
during ligand binding (Klein et al., 1985), but this does
not terminate G-protein-coupled responses (Kim et al.,
1997b). A putative candidate for an inhibitory G-
protein, Ga9, was recently identified. Deletion of Ga9
augments signalling centre initiation and subsequent
aggregation, which suggests that a functional Ga9
negatively regulates ACA activation. However, periodic
signalling still occurs in the Ga9 null cells, which
indicates that adaptation through Ga9 cannot be the
sole mechanism that terminates cAMP accumulation
(Brzostowski et al., 2002).
AcaA null cells show a similar phenotype to the

previously identified synag7 mutant. They show no
cAMP-induced cAMP production and can only aggre-
gate in synergy with wild-type cells. They fully differen-
tiate into spores in chimeric fruiting bodies, which
implies that ACA provides cAMP for extracellular
cAMP signalling, but is not required for intracellular
cAMP signalling and activation of PKA-dependent
responses (Pitt et al., 1992, 1993).
Oscillatory cAMP signalling not only controls aggre-

gation, but is also considered to coordinate multicellular
morphogenesis. The waves of cell movement that are the
hallmark of oscillatory chemoattractant secretion have
also been observed in slugs and fruiting bodies (Siegert
and Weijer, 1992). Slug tips function as classical
embryological organizers (Raper, 1940), and most likely
do so by acting as pacemakers for cAMP oscillations.
This is accentuated by high expression of ACA in slug
tips (Verkerke-van Wijk et al., 2001).

Adenylyl cyclase G

The AcgA gene is expressed in spores and its ablation
has little effect on growth and development to fruiting
bodies (Pitt et al., 1992). cAMP levels are high in
dormant spores and decrease rapidly when spores are
activated for germination. High osmolarity prevents this
drop in cAMP levels and inhibits the germination
process (Virdy et al., 1999). High osmolarity is main-
tained in the spore head by the presence of more than
100 mM ammonium phosphate (Cotter et al., 1999).
ACG is activated by high osmolarity and its activity
blocks the germination process through activation of
PKA (Figure 3). In acgA null mutants inhibition of
spore germination by high osmolarity does not occur
(Van Es et al., 1996).
Activation of ACG by high osmolarity requires

cellular integrity, but the mechanism is still obscure.
Histidine kinases are implicated in sensing osmotic stress
in bacteria and fungi (Santos and Shiozaki, 2001) and in

Dictyostelium the histidine kinase DokA mediates os-
motic stress sensing. Osmotic stress causes a DokA
mediated increase in cAMP levels, which is however not
achieved by activation of ACG, but by inhibition of the
cAMP-phosphodiesterase RegA (Ott et al., 2000). A
relationship between ACG and histidine kinase mediat-
ed osmosensing is therefore not obvious. When full
length ACG was expressed in yeast, it still showed
stimulation by high osmolarity. This almost certainly
implies that the osmosensor is intrinsic to the ACG
protein (Saran and Schaap, preliminary results).

Adenylyl cyclase B

ACB is as yet the most enigmatic of the three adenylyl
cyclases. The ACB gene, AcrA, is expressed at low levels
during growth; transcripts accumulate to high levels
after 4 h of starvation, to remain high up to the fruiting
body stage. ACB shows greatest sequence and structural
homology to the CyaC adenylyl cyclases from the
cyanobacteria Spirulina platensis and Anabena spirulen-
sis (Soderbom et al., 1999). The cyanobacteria utilized
their sodium-bicarbonate saturated sea-water habitat
for photosynthesis and are considered to be responsible
for transforming the pre-Cambrian carbon-dioxide rich
atmosphere into the oxygen-rich atmosphere that al-
lowed the Cambrian explosion of animal life (Ohno,
1997). cAMP is considered to play an important role in
stimulating metabolic activity in response to light and
carbon dioxide/bicarbonate. The two cyanobacterial
adenylyl cyclases are activated by light through a dual
component phosphorelay system (Yeh et al., 1997;

Fig. 3. Regulation of spore germination by high osmolarity: Ambient

conditions of high osmolarity in the spore head activate adenylyl

cyclase G (ACG) to produce cAMP. cAMP binds to the regulatory

subunit (R) of cAMP dependent protein kinase (PKA), causing

dissociation and activation of the catalytic subunit (C). Active PKA

inhibits the germination process in an unknown manner.
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Kasahara and Ohmori, 1999) and by bicarbonate
through direct activation of the catalytic domain (Chen
et al., 2000).
Similar to CyaC, the ACB cyclase domain is preceded

by a response regulator domain, that is the common
target for phosphorelay, and by a histidine kinase
domain. The latter domain may not be active in ACB,
because it lacks an essential histidine residue for
autophosphorylation and is also degenerate in other
conserved regions (Soderbom et al., 1999). The AcrA
sequence displays two putative hydrophobic transmem-
brane regions and the ACB enzyme activity is associated
with the particulate cell fraction. ACB can readily be
measured in cell lysates in the presence of the RegA
inhibitor IBMX. In intact cells ACB can only be
measured when either RegA or its activator RdeA are
absent (Kim et al., 1998a; Meima and Schaap, 1999).
ACB differs from most characterized class III ACs in
showing higher activity with Mg2+/ATP than with
Mn2+/ATP. ACB seems to be active whenever it is
expressed and its activity is not influenced by cAMP,
GTPcS, DIF, ammonia or bicarbonate (Kim et al.,
1998a; Meima and Schaap, unpublished results). Al-
though the tested signals do not exhaust the list of
putative regulators of enzyme activity, the apparent
constitutive activity of ACB points to a possibility that
cAMP production by ACB is largely controlled by
RegA activity.

cAMP breakdown

The inactivation of cyclic nucleotides by hydrolysis is
often of greater importance for dynamic signalling than
their synthesis. For appropriate regulation of second
messenger responses, mammalian cells employ no less
than 12 different classes of phosphodiesterases, which
each contain several members. The carboxyterminal
catalytic centre of these phosphodiesterases is con-
served, but the enzymes differ in the sequence and
structure of the aminoterminal region, which may
contain single or multiple regulatory domains that
control enzyme activity and anchoring to scaffolding
proteins (Houslay and Milligan, 1997; Mehats et al.,
2002). This extensive level of complexity is not present
in Dictyostelium, but five different cyclic nucleotide
phosphodiesterases have presently been identified. Two
of those, Pde3 and PdeD, are cGMP-specific phospho-
diesterases and will only be briefly discussed. PdsA is
a dual-specificity phosphodiesterase that hydrolyses
cAMP and cGMP at an equal rate. RegA and PdeE
are cAMP phosphodiesterases; RegA does not hydro-
lyse cGMP at all and PdeE does so at a six-fold lower
rate than cAMP.

PdsA

The first enzyme to be biochemically identified and
subsequently cloned is PdsA. PdsA is expressed in

starving cells and targeted both for secretion and for
display on the extracellular face of the plasmamembrane
(Malchow et al., 1972; Gerisch, 1976). The activity of
the secreted form of PdsA is regulated by a secreted
inhibitor, PDI (Riedel and Gerisch, 1971; Franke and
Kessin, 1981; Wu and Franke, 1990). PDI binds only to
the soluble form of PDE and changes its KM for cAMP
from 5 lM to 2 mM (Kessin et al., 1979). Cloning of the
PdsA gene revealed that its catalytic domain was unlike
that of the mammalian phosphodiesterases, but similar
to that of the low-affinity yeast enzyme PDE1 (Nikawa
et al., 1987). The PdsA gene is regulated by three
promoters that control expression during growth, ag-
gregation and multicellular development respectively
(Faure et al., 1990). The multicellular (late) promoter
element is only active in prestalk cells (Hall et al., 1993).
PdsA null mutants cannot aggregate (Darmon et al.,
1978; Sucgang et al., 1997), but aggregation can be
restored by expression of PdsA from the aggregative
promoter, while restoration of slug and fruiting body
formation requires expression from the late promoter
(Sucgang et al., 1997). Overexpression of PdsA accele-
rates the aggregation process, but arrests tip formation
and cell differentiation (Faure et al., 1988). Neither
ablation nor overexpression of any of the adenylyl
cyclases has such profound effects on aggregation and
development (Pitt et al., 1992, 1993; Parent and Dev-
reotes, 1996; Soderbom et al., 1999), which emphasizes
the crucial role of apposite regulation of hydrolysis of
extracellular cAMP.

RegA

The cAMP-specific phosphodiesterase RegA was iden-
tified independently by two laboratories as the defective
gene in a sporogenous mutant with accelerated deve-
lopment (Shaulsky et al., 1996, 1998; Thomason et al.,
1998). A similar phenotype was found in rdeC mutants
(Abe and Yanagisawa, 1983), which lack a functional
PKA regulatory subunit (Simon et al., 1992) and in
rdeA mutants, which are defective in a phosphotransfer
protein (Abe and Yanagisawa, 1983; Chang et al.,
1998). RegA is a remarkable hybrid of a bacterial type
response regulator and a mammalian type PDE catalytic
domain with a KM for cAMP hydrolysis of 5 lM
(Shaulsky et al., 1996; Thomason et al., 1998). RegA
transcripts appear after 4 h of starvation and thereafter
remain present at constant levels. The expression of
RegA is uniform in young slugs, but becomes localized
at the prestalk upper cup region during culmination
(Shaulsky et al., 1996; Tsujioka et al., 2001). RegA
protein is most abundant during aggregation. However,
in contrast to RegA mRNA levels, RegA protein levels
decrease strongly after slug formation (Thomason et al.,
1998). This down-regulation appears to be essential for
induction of prestalk and prespore genes and involves
two scaffolding proteins, CulA and FbxA/ChtA, that
target RegA for ubiquitination and degradation (Mo-
hanty et al., 2001).
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Both regA and rdeA null mutants show elevated
cAMP levels, which suggests a causal link between the
two. This was demonstrated in an elegant series of
experiments by Thomason and coworkers. Eukaryote
phosphotransfer systems are initiated by an activated
histidine kinase which autophosphorylates itself on a
conserved histidine residue and relays the phosphate to
a receiver aspartate residue within the same protein
(Figure 4). In a series of His–Asp phosphotransfer steps,
the phosphate is finally delivered to an aspartate in the
response regulator domain of the target protein (Santos
and Shiozaki, 2001). The Vmax of the RegA PDE
activity is 20-fold increased by phosphorylation of
Asp212 in its response regulator region (Thomason
et al., 1999). RdeA shows a consensus histidine (His65)
in a region of 20 amino-acids that is conserved in
histidine phosphotransfer proteins (Chang et al., 1998).
Thomason et al. (1999) showed that when RdeA was
phosphorylated on His65 in vitro, the phosphate was
carried over to the Asp212 of RegA, thereby activating
the enzyme activity. Conversely, when RegA was
phosphorylated on Asp212, it could relay a phosphate
to the His65 of RdeA. Depending on the relative
concentrations of the phosphodonor proteins, the RegA
PDE activity can be both positively and negatively
regulated by phosphorelay (Thomason et al., 1999). The
Dictyostelium histidine kinase DhkC may act as a
positive regulator of RegA activity (Figure 4A). Similar
to regA null cells, dhkC null cells show rapid develop-

ment, without a migrating slug stage. DkhC is proposed
to be activated by ammonia, which induces prolonged
slug migration and inhibits terminal differentiation
(Singleton et al., 1998). Earlier work indicated that loss
of ammonia gas from culminants triggered spore and
stalk maturation (Schindler and Sussman, 1977; Wang
and Schaap, 1989), supposedly by releasing a block on
PKA activity (Harwood et al., 1992; Hopper et al.,
1993b). This can now be understood in terms of
activation of RegA by ammonia and subsequent inhi-
bition of cAMP accumulation and PKA activation.
DhkA and DhkB are putative negative regulators of

RegA. In addition to the histidine kinase domain, both
proteins harbour putative transmembrane domains and
an extracellular putative sensor domain (Zinda and
Singleton, 1998; Wang et al., 1999). The proposed
ligand for DhkA is SDF-2, a factor that is secreted by
prestalk cells to induce the maturation of spores (Anjard
et al., 1998; Wang et al., 1999). dhkA null mutants are
defective in spore maturation and this defect can be
suppressed by abrogation of RegA function or consti-
tutive activation of PKA. This suggests that RegA and
PKA act downstream of DhkA in a scenario where
binding of SDF-2 to DhkA inhibits RegA (Wang et al.,
1999) and thereby permits PKA activation and spore
maturation (Figure 4A). The proposed ligand for the
sensor domain of DhkB is discadenin (Figure 4B), an
inhibitor of spore germination that is released in the
spore head (Zinda and Singleton, 1998). The spores of

Fig. 4. Network for regulation of terminal differentiation and spore dormancy: (A) In slug cells cAMP is predominantly produced by adenylyl

cyclase B, which harbours a single cyclase domain, a response regulator (RR) and a histidine kinase homology domain (HK) that is probably not

functional (�). cAMP activates PKA, which will induce the terminal differentiation of spore and stalk cells. cAMP levels are stringently regulated

by the cAMP-phosphodiesterase RegA, which is active when phosphorylated on Asp212 in its response regulator domain (RR). The

phosphorylated state of RegA is controlled by histidine kinases/phosphatases with attached sensor domain. The phosphotransfer protein RdeA

acts as intermediate for bidirectional phosphorelay. DhkC functions as a histidine kinase, which is activated by binding of its supposed ligand

NH3 to the sensor domain. DhkC first autophosphorylates itself on a conserved histidine. The phosphate is then relayed to a conserved aspartate

in the DhkC receiver domain (rec) and subsequently via RdeA to RegA, thereby activating RegA. DhkA and DokA function as histidine

phosphatases (HP) when sensing their supposed stimuli SDF-2 and high osmolarity. They reverse the direction of phosphorelay by acting as

phosphate sinks and inactivate RegA. (B) In spores cAMP is mainly produced by ACG. RegA also controls cAMP levels at this stage and is

negatively regulated by DhkB, which is proposed to act as a histidine phosphatase when bound to discadenine, an inhibitor of spore germination.

DokA may act in parallel to ACG at the spore stage to maintain the dormant state under high osmolarity conditions. The phosphate transfers

that are indicated by solid arrows in these figures have been confirmed by biochemical methods. The processes indicated by dashed arrows as well

as all supposed ligands of the Dhk’s are inferred from epistatic relationships, null mutant phenotypes and homologous processes in other

organisms.
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the dhkB null mutant germinate precociously in the
spore head. This phenotype can be reversed by constitu-
tive activation of PKA, indicating that also here PKA
acts downstream of DhkB (Zinda and Singleton, 1998).
DokA is a third negative regulator of RegA and dokA

null cells also form fruiting bodies without viable spores.
This effect has not yet been pinpointed to either a defect
in spore maturation or to precocious germination
(Schuster et al., 1996). The dokA genetic lesion also
affects general cell physiology, because dokA null cells
cannot withstand hyperosmolarity and do not show the
increase in cAMP levels that wild-type cells show in
response to osmotic shock. This increase is due to a
DokA-triggered and RdeA-mediated inhibition of RegA
activity and DokA was shown to dephosphorylate
RdeA in vitro (Ott et al., 2000). DokA contains a sensor
domain, but no putative transmembrane domains and
resides most likely in the cytosol (Schuster et al., 1996).
The absence of spores in dokA null fruiting bodies can
have two causes: (i) high osmolarity acts as on DokA as
a additional signal for spore maturation (Figure 4A) or
(ii) high osmolarity acts on DokA and ACG in parallel
to raise cAMP levels and inhibit (precocious) spore
germination (Figure 4B). For all negative regulators of
RegA, the ligands of the Dhk sensor domains probably
act to revert the histidine kinase into a phosphatase,
which turns them into phosphate sinks and revert the
phosphorelay reaction (Ott et al., 2000).
The identification of RegA and its interacting factors

has provided the molecular framework to understand the
signalling networks that regulate terminal differentiation
and spore germination in Dictyostelium. However, it
must be realized that the proposed roles of all histidine
kinases/phosphatases have thus far only been inferred
from epistatic relationships and that all the proposed
ligands have yet to be shown to bind to specific Dhk
sensor domains and activate catalytic activity.
In addition to effects on gene regulation, RegA null

mutants show defects in oscillatory cAMP signalling
and in chemotaxis (Wessels et al., 2000). The signalling
defect has been attributed to loss of negative feedback
on cAMP production (Laub and Loomis, 1998). The
chemotaxis defect is due to a failure to suppress lateral
pseudopods, which normally contributes to polarized
movement of cells in a chemotactic gradient (Wessels
et al., 2000). This points to an as yet undocumented role
for intracellular cAMP in chemotaxis.

PdeD and PdeE

Two PDEs were identified by screens of the genomic
databanks with consensus motifs for cyclic nucleotide
binding domains (Goldberg et al., 2002; Meima et al.,
2002; 2003) and named GbpA and GbpB by Goldberg
et al. (2002) and PdeD and PdeE by Meima and
coworkers. They both harbour two cyclic nucleotide
binding motifs, preceded by a metallo-b-lactamase
domain. Truncated proteins containing solely this motif
displayed cyclic nucleotide phosphodiesterase activity

(Meima et al., 2002). The PdeD/GbpA gene was found
to encode the cGMP-stimulated cGMP phosphodies-
terase that is lacking in stmF mutants (Ross and Newell,
1981; Bosgraaf et al., 2002; Meima et al., 2002). The
second cGMP-specific phosphodiesterase, PDE3 is
homologous to the mammalian PDEs (Kuwayama
et al., 2001). PdeE/GbpB encodes a hitherto unidentified
cAMP-stimulated cAMP-phosphodiesterase activity,
that shows very pronounced expression during aggre-
gation. PdeE has a low affinity for cAMP as substrate
(KM ¼ 1 mM), but is about four-fold stimulated by
cAMP with a KA of 3 lM. PdeE null mutants aggregate
and develop normally. They show a modest augmenta-
tion of the cAMP relay response, which suggests that
PdeE may contribute to the negative feedback loop of
oscillatory cAMP signalling (Meima et al., 2003;
Bosgraaf et al., 2002).

cAMP detection

cARs

Extracellular cAMP is detected by G-protein coupled
serpentine receptors. Four receptors, in order, cAR1,
cAR3, cAR2 and cAR4 are expressed during progres-
sively later stages of development (Klein et al., 1988;
Johnson et al., 1993; Saxe III et al., 1993; Louis et al.,
1994). The major differences in amino-acid sequence
between the receptors are localized in the carboxy-
terminal cytoplasmic domain. The receptors show a
decrease in affinity which correlates with their timing of
expression, with the highest affinity receptor being
expressed the earliest (Johnson et al., 1992; Kim et al.,
1997a). All four cARs can couple to all investigated
cAMP-activated signal transduction pathways, such as
chemotaxis, ACA and guanylyl cyclase activation, Ca2+

influx and gene regulation. It is assumed that the
expression of receptors with lower affinity during multi-
cellular development reflects an adjustment to higher
ambient cAMP levels in multicellular structures (Milne
and Devreotes, 1993; Verkerke VanWijk et al., 1998;
Kim et al., 1998b). Serpentine receptors typically use
heterotrimeric G-proteins as intermediates for signal
transduction and this is the case for cAR-mediated
activation of chemotaxis, ACA, guanylyl cyclase and
phospholipase C and for induction of aggregative gene
expression. cAR mediated induction of Ca2+ influx,
ERK2 activation, StatA translocation to the nucleus and
prespore gene expression donot require heterotrimericG-
proteins (Milne et al., 1995;Wu et al., 1995;Maeda et al.,
1996; Araki et al., 1998; Jin et al., 1998). The immedi-
ate targets for cARs in these responses are still obscure.

PKA

PKA plays a very dominant role in regulation of
development. The Dictyostelium PKA holoenzyme con-
sist of one catalytic (PKA-C) and one regulatory
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domain (PKA-R) (Mutzel et al., 1987). This differs from
the vertebrate enzymes, which consist of dimers of each
domain. Disruption of the PKA-C gene or overexpres-
sion of a dominant-negative form of PKA-R under
constitutive or cell-type specific promoters has shown
that PKA is required for the growth to development
transition (Schulkes and Schaap, 1995; Endl et al., 1996;
Mann et al., 1997), the control of developmental timing
(Simon et al., 1992), the differentiation of prespore cells
(Hopper et al., 1993b), the terminal maturation of
spores and stalk cells (Harwood et al., 1992; Mann
et al., 1994) and the control of spore germination (Van
Es et al., 1996). For most of these responses, the
activation of the PKA-C is achieved through binding
of cAMP to PKA-R, followed by dissociation of the R–
C complex. However, at the onset of starvation PKA-C
activity is also controlled by regulation of its translation.
During growth, the translational regulator PufA binds
to conserved motifs at the 3¢ end of the PKA-C
transcript, thereby inhibiting PKA-C translation (Souza
et al., 1999). Growing cells secrete the prestarvation
factor PSF at a constant rate and use the level of
accumulated PSF to measure nutrient status relative to
cell density (Clarke and Gomer, 1995). The high levels
of PSF that accumulate when cells start to starve trigger
the transcription of a protein kinase, YakA, which
inhibits the function of PufA, allowing PKA-C to
accumulate. YakA also induces cell cycle arrest inde-
pendently from its effects on PufA. The two effects cause
the cells to stop growing and initiate multicellular
development (Souza et al., 1999).
Recent work shows that YakA can be directly

activated by a variety of stress factors, including heat
and oxidative stress, which results in growth arrest and
PKA activation (Taminato et al., 2002). In combination
with earlier work showing that osmotic shock can cause
PKA activation both through RegA repression (Ott
et al., 2000) and ACG activation (Van Es et al., 1996),
these data highlight that Dictyostelium development is in
essence a stress response.

Future challenges

Gene regulatory pathways

Recent years have seen major advances in understanding
the interpretation of cAMP as a chemotactic signal by
the cell and the cytoskeletal reorganization that is
instrumental for coordinated cell movement. With
respect to the control of gene expression by extracellular
cAMP our knowledge is still fragmentary. Tagged
mutagenesis has proven to be an excellent tool to
uncover many novel components of the gene regulatory
pathways (Kuspa and Loomis, 1992), but it has not yet
been possible to reconstruct a single pathway from cAR
activation to gene transcription. Screens for suppressor
mutants have been used to great advantage to find
interacting partners in signal transduction (Shaulsky

et al., 1996; Bear et al., 1998; Souza et al., 1999) and the
use of DNA microarrays may systematically identify all
proteins with altered expression in a specific mutant or
during a specific gene induction response (Van Driessche
et al., 2002). In combination with more classical mole-
cular genetic-, immunological- and biochemical tools
to detect protein–protein interactions, these strategies
should allow us to find the missing links within the next
10 years.

Targets for PKA and compartmentalization of signalling

Despite the prominent role for PKA at virtually all stages
of development, the direct targets are thus far unknown.
There is genetic evidence for the regulation by PKA of
the transcription factor Myb2 and the nuclear factor
CudA, but evidence for direct phosphorylation by PKA
is lacking (Fukuzawa et al., 1997; Otsuka and Van-
Haastert, 1998). PKA activity has been found both in the
cytosol and the nucleus (Woffendin et al., 1986), sug-
gesting compartmentalization of cAMP signalling. In
metazoans, PKA is targeted to different subcellular
locations by a family of A-kinase anchoring proteins
(AKAPs), that bind to the dimerization domain of PKA-
R, and to a wide variety of other signalling molecules
(Houslay and Milligan, 1997; Feliciello et al., 2001). For
example, muscle-selective AKAP forms a signalling
module in which the activity of the cAMP-specific
phosphodiesterase PDE4D3 is regulated by the anchored
PKA holoenzyme (Dodge et al., 2001). In Dictyostelium,
there is biochemical evidence for the presence of cAMP
signalling modules. PKA-R binds to RegA and stimu-
lates its activity at least 18-fold (Shaulsky et al., 1998).
RegA only weakly affects cAMP production by ACA,
but effectively annihilates the levels of cAMP produced
by ACB, suggesting a close proximity between ACB and
RegA (Kim et al., 1998a; Meima and Schaap, 1999). It is
tempting to suggest the presence of a signalling complex
of these enzymes that would allow tight control of cAMP
production until the proper signals for terminal differ-
entiation are detected. No AKAPs have been identified
in the Dictyostelium genome so far and the Dictyostelium
PKA-R subunit lacks the dimerization domain, that is
essential for binding to AKAPs. However, the different
vertebrate AKAP families show similarity in secondary
structure rather than in protein sequence (Feliciello
et al., 2001). Therefore, the presence of functional
homologues with different target binding sites in Dictyo-
stelium cannot be excluded.
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