Lessons learned when trying to recreate the Origin of Life

Dieter Braun

Biophysics, Center for NanoScience, LMU Munich

0. Introduction
1. Molecules
2. Entropy
3. Early Earth

1. Molecules

Cosmic-ray chiral selection?

- Muons (85% of cosmic radiation) come from weak decays
- Unlike electrons, muons can retain their polarization
- Direct damage or absorption of induced-circularly polarized photons (Cherenkov UV or muonic X-rays)

At ground level, the shower is dominated by magnetically polarized muons.

er Muon ally

-

Ejected electron (ionization) Muon

neutrino

Cosmic

rav

Roger Blandford, Stanford Stephen Blundell, Oxford Dieter Braun, LMU/ORIGINS Noémie Globus, UC Santa Cruz, Stanford Stephan Paul, TUM/ORIGINS Thomas Prokscha, Paul Scherrer Institut

Interaction of primary cosmic ray (p⁺) with atmospheric atoms (N, O) \rightarrow Generation of K[±] and $\pi^{\pm} \rightarrow$ Decay of $\pi^{\pm} \rightarrow$ Generation of μ^{\pm} and v_{μ}

Globus & Blandford 2020

μ-

Synthesis of Nucleotides by Ring opening conjugation?

"Unboronified" from Benner et.al. Collaboration with Ram Krishnamurthy

2. Tackling Entropy

High sequence entropy Random sequences

Dilution

Dilution

To ensure open-ended Evolution we need to...

Daemon Flow

R

What is selected for?

- No mysterious phenotype
- Speed is the selection pressure
- Increase length for

Maxwell's Daemon

Degradation

- open ended evolution
- Ribosome, not hard to reach Ribozymes are the goal?

2nd law of thermodynamics

Lower sequence entropy not possible in equilibrium Information gain

... select for long sequences

> Replication Mutation

Inhibition

Strand

3. How Early Earth can drive evolution

Creating RNA-Life by triggering Darwinian Evolution

porous rock pH 9 - 10 0° - 40°C dry

40

no time

to hybridize

48

DNA length (bp) 57 58

12

 T_{lig} (°C)= 25 30 35

DNA strand leng h (nt)

24

ATGC

Patrick Kudella, Alexei Tkachenko, Annalena Salditt, **Sergei Maslov PNAS 2021**

0 hours about 66 hours Evolution by Random RNA ligation is guided by kinetics

30

80

з h 9 h con

too few cycles

to ligate

 $k_{on}^{\hat{h}yb} = 1 \, \mu M^{-1} s^{-1}$

ATGC

19days

410s

Elongation since the

partner sequence is

found much faster

AT

410s

6s

Creating RNA-Life by triggering Darwinian Evolution

Patrick Kudella, Alexei Tkachenko, Annalena Salditt, **Sergei Maslov PNAS 2021**

Annalena Salditt, Sergei Maslov PNAS 2021

Creating RNA-Life by triggering Darwinian Evolution

a b c

āζbζc

ā d b d c ∎

a

Professor, Tohoku University

Starting with 6 Sequences, a,b,c & complement; 20mers under ligation & serial dilution

b

aςbςc

b>c

Binding competition creates long term memory in a replicating network

Prebiotic Volcano Surface Simulator for RNA

Isothermal replication by evaporative air flow

ribozymes

Nat Commun 2023 14, 1495

Heated air bubbles host ribozyme self-replication?

Nat Commun **2023 14**, 1495

Heated air bubbles host vesicle formation and encapsulation

Nonequilibrium and Chemistry driving early Darwinian Evolution

ABOUT US I NEWS I FELLOWSHIPS & COOPERATION GRANTS I MINERVA CENTERS I WEIZMANN PROGRAMME I HEINEMAN

Homepage of the Minerva Stiftung > Minerva Center Programme > Current Minerva Centers ...

Ben-Gurion University of the Negev

Minerva Center for Studying the Planetary **Emergence of Life**

Minerva Centers

Ben-Gurion University of the Negev (established in 2023)

Prof. Gonen Ashkenazi

Director

Sec. +972 8 6461637

gonenash@bgu.ac.il
 gonenash@bgu.ac.il
 gonenash@bgu.ac.il

② Laboratory for Systems Chemistry

æ X М a

A

Ω

Search

Christof Mast

Paula Aikkila

Felix Dänekamp

Almuth Schmid

Alexander Floroni

Sreekar Wunnava

Klung-Wilhelmy Price Volkswagen Life!

Image: Non-State of the state of the stat

Riccardo

Schiroli

