
Topological Defects

Problem Sheet 5 20 November 2023

1. Quantization of the Domain Wall

Let us consider the scalar field theory with the action

S =

∫
d2x

[
1

2
(∂µϕ)

2 − λ2

4
(ϕ2 − v2)2

]
. (1)

In the following, we will analyze the decomposition

ϕ(t, z) = ϕk(z) + χ(t, z), (2)

where χ are fluctuations around the background described by the kink solution
ϕk(z) =

m√
2λ

tanh
(
m
2
z
)
with mass Mk =

m3

3λ2 , where m =
√
2λv.

1. Expand the action as

S[ϕ] = S[ϕk] +

∫
d2x

[
1

2
χ̇2 − 1

2
χL2

χ+ . . .

]
(3)

and determine L2.

L2 is a Hermitian operator and thus its eigenfunctions form a complete basis. We
will write

L2
χ
n(z) = ω2

n
χ
n(z), (4)

where the orthonormal function χ
n(z) are normalized by∫

dzχn(z)χm(z) = δnm. (5)

Now we can write down the decomposition

χ(t, z) =
∑
n

an(t)χn(z). (6)

2. Show that the Hamiltonian corresponding to the fluctuations χ can be written
as

H =
∑
n

[
1

2
ȧ2n +

ω2
n

2
a2n

]
. (7)

Recall your quantum mechanics course and interpret the result.

The energy of the system is preserved under translations of the domain wall. The-
refore, all domain walls ϕk(z − z0) have the same energy. That’s why a mode pro-
portional to the derivative ∂z0ϕk(z − z0) does not give an energy contribution. We
call this mode the zero mode.



3. Find the normalized zero mode solution.

4. Show that this mode corresponds to the eigenvalue ω0 = 0.

5. Show that L2 has no negative eigenvalues.
Hint : Try to write L2 = P †P .

6. Let’s assume that for small velocities the dynamics of the kink can be described
by ϕk(t, z) = ϕk(z − z0(t)). Show that the full Hamiltonian can be written as

H = M +
M

2
ż20 +

∑
n̸=0

[
1

2
ȧ2n +

ω2
n

2
a2n

]
. (8)

Next, we want to calculate the quantum effects on the mass of the domain wall.
From the Hamiltonian, we can read of

Mquantum = M +
∑
n̸=0

ωn

2
. (9)

Equation (4) has two bounded solutions with ω2 < m2 and a continous spectrum
for ω2 > m2. One bounded solution corresponds to the zero mode and the other
bounded solution is

χ
1(z) ∝

sinh mz
2

cosh2 mz
2

. (10)

One possible solution for the continuous spectrum is given by

χ
p(z) ∝

(
−p2 − 3m

2
ip tanh

(mz

2

)
+

m2

2
− 3m2

4

1

cosh2
(
mz
2

)) eipz; (11)

where p2 = ω2
p −m2.

7. (optional and hard) Derive the solutions (10) and (11).

8. Far away from the domain wall, equation (11) describes a free wave. During
the interaction with the domain wall, it obtains a phase shift. One can denote
this by

χ
p(z → −∞) = eipz, (12)

χ
p(z → ∞) = eipz+iϕ. (13)

Calculate the phase shift eiϕ.

To quantize the continuous part, we need to choose a finite volume of length L. At
the boundary, we can demand that a general solution Aχp(z) + Bχ

p(−z) vanishes
there. Furthermore, in quantum physics, we always calculate energies with respect
to the vacuum (no domain wall). Therefore, we need to subtract the vacuum energy
corresponding to free waves.

9. Show that the quantum corrected mass of the domain wall is given by

Mquant ≈ M +

√
3m

4
− 1

2

∞∑
n=0

ϕ
L
p0n√

m2 + (p0n)
2
, (14)

where p0n = πn/L corresponds to the momentum of the free waves.



10. Show that in the continuous limit the expression can be rewritten to

Mquant ≈ M +

√
3m

4
+

m

π

∫ ∞

0

dy

(
1

1 + y2
+

2

1 + 4y2

)√
1 + y2; (15)

with y = p/m.

11. The integral is logarithmically divergent. Therefore, we can introduce a cut-
off at p = MUV . Show that the quantum-corrected domain wall mass can be
approximated by

Mquant ≈ M +
3m

2π
ln

(
MUV

m

)
. (16)


