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Problem 1 Drude conductivity

We consider electrons in a disorder-averaged scattering potential described by the Green’s function
with momentum k and Matsubara frequencies iωn,

G(k, iωn) =
1

iωn − ξk +
i
2τ
sgn(ωn)

. (1)

Here, ξk is the dispersion relation and τ is the scattering time scale. The goal is to compute the
Drude conductivity, constituted by the diamagnetic and paramagnetic current response, using
Kubo’s formula. The latter relates the conductivity σ(ν) to the current-current fluctuations

σ(ν) =
1

−iν

{
ne2

m
− iν

〈
[j(q → 0, ν), j(q → 0,−ν)]

〉}
(2)

with current j(q → 0, ν) ≡ j(ν). For the optical conductivity in metals, the wavevector q ≪ kF
is much smaller than the Fermi momentum kF , which justifies to consider the q = 0 component.
To obtain the real frequency response of the system, we first need to derive the auto-correlation
function on the imaginary frequency axis and then do the analytic continuation. We use the
boundary condition (DC current in metals) to re-write the conductivity in imaginary time as

σ(iνn) =
1

νn

[〈
j(ν ′)j(−ν ′)

〉]ν′=iνn

ν′=0
(3)

with ⟨j(iνn)j(−iνn)⟩ =
´ β
0
dτeiνnτ ⟨Tj(τ)j(0)⟩.

(1.a) For a parabolic dispersion, ξk = k2/2m, the current operator at q = 0 is given by

j(q = 0) =
e

2m

∑
k

2kĉ†kĉk. (4)

Use Feynman rules to show that the current fluctuations can be expressed as

⟨j(iνn)j(−iνn)⟩ = −2e2T
∑
k,iωn

k2

m2
G(k, iωn + iνn)G(k, iωn). (5)

(1.b) Show that the contribution for iνn → 0 exactly cancels the diamagnetic term in Eq. (2).
Hint: Use the Ward identity k

m
G2(k) = ∇kG(k).
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(1.c) Now, we want to evaluate (5) using the Matsubara summation technique by writing the
Matsubara sum as an integral over the complex variable z using the Fermi-Dirac distributi-
on nF (ω). Show that it can be be expressed as an integral over products of retarded and
advanced Green’s functions along the real axis.
Hint: The integrand has branch cuts and you need to consider three contours.

(1.d) Evaluate the frequency integration.
Hint: Use that for T ≪ EF , we can express nF (ϵ+ ω)− nF (ϵ) = −ωδ(ϵ).

(1.e) Take the continuum limit and change variables

ˆ
d3k

(2π)3
→
ˆ

dΩ

4π

N(ξ)dξ

2π
, (6)

where N(ξ) is the density of states. Assume that at low-energy contributions at the Fermi
surface are dominant and evaluate the integral.

(1.f) Analytically continue Eq. (5) and insert into Eq. (2). Show that we have obtained the known
result for Drude conductivity.

Problem 2 Analytic properties of Green’s functions

In many-body theory, we often encounter various kinds of Green’s functions. In this problem, we
figure out the intimate connection between different types of Green’s functions. Especially, we see
that all of them can be obtained from the imaginary time-ordered Green’s function using analytic
continuation in the complex frequency plane. Some important Green’s functions are the following,

• Imaginary time-ordered Greens function

(−1)GAB(τ−τ ′) = ⟨Tτ{Â(τ)B̂(τ ′)}⟩ = θ(τ−τ ′)⟨Â(τ)B̂(τ ′)⟩+ζθ(τ ′−τ)⟨B̂(τ ′)Â(τ)⟩ . (7)

• Real time-ordered Green’s function

iGAB(t− t′) = ⟨Tt{Â(t)B̂(t′)}⟩ = θ(t− t′)⟨Â(t)B̂(t′)⟩+ ζθ(t′ − t)⟨B̂(t′)Â(t)⟩ . (8)

• Retarded Green’s function

GR
AB(t− t′) = iθ(t− t′)⟨[Â(t), B̂(t′)]ζ⟩ . (9)

• Advanced Green’s function

GA
AB(t− t′) = −iθ(t′ − t)⟨[Â(t), B̂(t′)]ζ⟩ . (10)

• Spectral function

AAB(ω) = Im{GR
AB(ω)} , GR

AB(ω) =

ˆ
dtei(ω+i0+)t GR

AB(t) (11)

Here, ⟨· · · ⟩ = Tr
(
e−β(K̂−Ω) · · ·

)
, K̂ = Ĥ −µN̂ , e−βΩ = Tr

(
e−βK̂

)
, Â(τ) = eτK̂Âe−τK̂ , and [·, ·]ζ

is the commutator (anti-commutator) for bosons (fermions).
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(2.a) Show that GAB(τ + β) = ζ GAB(τ) for −β ≤ τ < 0. Thus, GAB(τ) is (anti-)periodic for
bosons (fermions), and can be Fourier expanded in terms of bosonic (fermionc) Matsubara
frequencies ωn = 2πn/β (ωn = π/β(2n+ 1)) as GAB(τ) = 1/β

∑
n e

−iωnτGAB(iωn).

(2.b) Derive the Lehman representation of AAB(ω) by expanding Eq. 11 in terms of the complete
set of eigenstates of Ĥ.

(2.c) Derive the Kramers-Krönig relations, which states that for every analytic function χ(z) =
χR(z) + iχI(z) in the closed upper-half plane (upper half plane including the real axis),

χR(ω) = P
ˆ

dω′

π

χI(ω
′)

ω′ − ω
,

χI(ω) = −P
ˆ

dω′

π

χR(ω
′)

ω′ − ω
.

(12)

Hint: use the Cauchy’s theorem, which for χ(z), states that 0 =
´
dω′χ(ω′)/(ω′ − ω + i0+).

Then use the relation 1/(ω′ − ω + i0+) = P{1/(ω′ − ω)} − iπδ(ω − ω′) . Kramers-Krönig
relations are crucial identities relating the real and imaginary parts of the Fourier transform of
any causal function. Since response functions in physics are always causal, the Kramers-Krönig
relations hold for every response function in the universe.

(2.d) From Kramers-Krönig relations, show that

GR
AB(ω) =

ˆ
dω′

π

1

ω′ −
(
ω + i0+

) AAB(ω
′) ,

GA
AB(ω) =

ˆ
dω′

π

1

ω′ −
(
ω − i0+

) AAB(ω
′) .

(13)

Verify Eqs. 13 explicitly using Lehman representation of GR
AB(ω), G

A
AB(ω), and AAB(ω).

(2.e) Using the Lehman representation of GAB(iωn), G
R
AB(ω) and GA

AB(ω), show that all are
related to GAB(z) defined by

GAB(z) =

ˆ
dω′ 1

ω′ − z
AAB(ω

′) , (14)

such that GR
AB(ω) = GAB(z = ω + i0+), GA

AB(ω) = GAB(z = ω − i0+), and GAB(iωn) =
GAB(z = iωn).

(2.f) Show that the imaginary part of GAB(z) has a branch cut along the real axis, with a
discontinuity of its imaginary part equal to 2AAB(ω).
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