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Problem 1 Fermi gas with scattering potential

In this problem, we apply the Green's function formalism to the scattering of fully spin-polarized
electrons off a central potential. Assume an ideal Fermi gas of non-interacting electrons at 7" = 0 with
chemical potential 1 in d dimensions. The Fermi gas is subject to a central potential U(x) = U(x),
with = |x|. In second quantization, the physics is governed by the Hamiltonian
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In Eq. , zﬂ(x) is the electron field operator and the first(second) term stands for the electrons
kinetic(potential) energy.

(1.a) Rewrite the Hamiltonian in momentum space in terms of fermionic operators éL and ¢ =
[ d?zexp( — ik - x) ¥ (x).

(1.b) Write down the Dyson's equation for the electron’s Green's function G(k,k’,w) in terms
of the electron’s free Green's function G (k,w) and the Fourier transform of the potential
U. Here, k' and k stands for electron’s initial and final momentum, respectively. Given the
diagrammatic representations below, express the Dyson's equation in diagrammatic form.
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Abbildung 1: Diagrammatic representation of G(k,w), Go(k,w) and Uy_y .

(1.c) The geometric summation in Dyson's equation can take an alternative form in terms of the
t — matriz, represented by
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Abbildung 2: Diagrammatic representation of the t-matrix.

Write a self consistent equation satisfied by 7} /(w).


https://www2.physik.uni-muenchen.de/lehre/vorlesungen/wise_23_24/TMP-TA4/index.html

In the following sections, assume that U(x) is a delta potential, U(x) = U5 (x).

(1.d) Argue that for so-called s-wave scattering, Ty s (w) is independent of k and k', T} j(w) =
T(Q).

(1.e) Show that T'(w) is of the form

U

T(w) = T UF@)" (2)

Obtain an integral expression for F'(w) containing N (€), the density of states at energy e.

(1.f) For d =2, find an exact expression for F'(w). To avoid divergences in the integral, take a
high energy cutoff A for the energies involved.

(1.g) Show that for d = 2, any attractive potential has a bound state.

Problem 2 Angle-resolved photoemission spectroscopy (ARPES)

In ARPES the single-particle spectrum can be measured with full energy w and momentum k
resolution. In an experiment, a photon removes an electron from a sample — in this process energy
and momentum is conserved.

We model the sample by spin-1/2 fermions é,Tw governed by a generic interacting Hamil-
tonian Hgample at temperature T'. The process of removing an electron is described by a weak

perturbation V that locally annihilates a fermion in the sample and creates a fermion in a (non-
interacting) probe system d;’o. The latter is a non-interacting, free fermion system described
by

}A[O = Z(€(k) - M)CZ]Jrq,o—CZk,cra (3)
k,o

with a known dispersion relation €(k). Here, we consider a 2D square-lattice tight-binding model
with €(k) = —2t [cos(k,) + cos(k,)] and an initially empty probe system with fiprobe = —4t. The
two systems are initially uncoupled and in equilibrium. At time ¢ = 0, we apply the perturbation 1%
and calculate the response of the system.
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(2.a)

Use Fermi's golden rule to calculate the rate I'(k,w) under which fermions tunnel from the
sample to the bath. What is the valid parameter regime of the result?

Hint: Fermi's golden rule perturbatively describes the rate between an initial and final state
given by T';,; = Zp;(1 — py)|(f|V]i)|?6(E; — E;), where p, is the probability that the
system is in state |n).

Find a relation between the rate I'(k,w) and the spectral function A(k,w). You should find
that I' o< A, i.e. the emission rate of ejected electrons which can be measured experimentally,
gives direct access to the single-particle spectrum of the sample.

Find a relation between the spectral function A(k,w) and the Green's function G(k,w).
Hint: Use the Lehman representation.

Now we assume a sample with non-interacting free fermions ¢'s, i.e. f[sample ~ Hy and we
set the temperature to 7' = 0. Sketch the rate I'(k,w) for different chemical potentials x

(=filling).

Our model describes the conceptual idea of ARPES. Describe in words what else you have to
take into account in an actual solid state experiment.
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