

FAKULTÄT FÜR PHYSIK IM WISE 2023/24

TMP - TA4: CONDENSED MATTER MANY-BODY-PHYSICS

AND FIELD THEORY II

DOZENT: PROF. DR. FABIAN GRUSDT

ÜBUNGEN: NADER MOSTAAN, LUKAS HOMEIER

https://www2.physik.uni-muenchen.de/lehre/vorlesungen/wise_23_24/TMP-TA4/index.html

Sheet 1:

Hand-out: Monday, Oct. 23, 2023; Solutions: Tuesday, Oct. 31, 2023

Problem 1 Fermi gas with scattering potential

In this problem, we apply the Green's function formalism to the scattering of fully spin-polarized electrons off a central potential. Assume an ideal Fermi gas of non-interacting electrons at T=0 with chemical potential μ in d dimensions. The Fermi gas is subject to a central potential $U(\mathbf{x})=U(x)$, with $x=|\mathbf{x}|$. In second quantization, the physics is governed by the Hamiltonian

$$\hat{H} = \int d^d x \, \hat{\psi}^{\dagger}(\mathbf{x}) \left(-\frac{\hbar^2 \nabla^2}{2m} \right) \hat{\psi}(\mathbf{x}) + \int d^d x \, \hat{\psi}^{\dagger}(\mathbf{x}) U(\mathbf{x}) \hat{\psi}(\mathbf{x}) \,. \tag{1}$$

In Eq. 1, $\hat{\psi}(\mathbf{x})$ is the electron field operator and the first(second) term stands for the electrons kinetic(potential) energy.

- (1.a) Rewrite the Hamiltonian in momentum space in terms of fermionic operators $\hat{c}_{\mathbf{k}}^{\dagger}$ and $\hat{c}_{\mathbf{k}} = \int d^dx \exp(-i\mathbf{k} \cdot \mathbf{x}) \hat{\psi}(\mathbf{x})$.
- (1.b) Write down the Dyson's equation for the electron's Green's function $G(\mathbf{k}, \mathbf{k}', \omega)$ in terms of the electron's free Green's function $G_0(\mathbf{k}, \omega)$ and the Fourier transform of the potential U. Here, \mathbf{k}' and \mathbf{k} stands for electron's initial and final momentum, respectively. Given the diagrammatic representations below, express the Dyson's equation in diagrammatic form.

$$\begin{array}{c|c}
\mathbf{k'} & \mathbf{k} \\
\hline
G(\mathbf{k}, \mathbf{k'}, \omega) & U_{\mathbf{k}-\mathbf{k'}}
\end{array}$$

Abbildung 1: Diagrammatic representation of $G(\mathbf{k}, \omega)$, $G_0(\mathbf{k}, \omega)$ and $U_{\mathbf{k}-\mathbf{k}'}$.

(1.c) The geometric summation in Dyson's equation can take an alternative form in terms of the t-matrix, represented by

$$\mathbf{k}' \bigodot_{T_{\mathbf{k},\mathbf{k}'}} \mathbf{k} = \frac{\mathbf{k}' \bullet \mathbf{k}}{\mathbf{k}} + \frac{\mathbf{k}' \bullet \mathbf{k}''}{\mathbf{k}'' \bullet \mathbf{k}} + \frac{\mathbf{k}' \bullet \mathbf{k}''}{\mathbf{k}'' \bullet \mathbf{k}} + \cdots$$

Abbildung 2: Diagrammatic representation of the t-matrix.

Write a self consistent equation satisfied by $T_{\mathbf{k},\mathbf{k}'}(\omega)$.

In the following sections, assume that $U(\mathbf{x})$ is a delta potential, $U(\mathbf{x}) = U\delta^{(d)}(\mathbf{x})$.

- (1.d) Argue that for so-called s-wave scattering, $T_{\mathbf{k},\mathbf{k}'}(\omega)$ is independent of \mathbf{k} and \mathbf{k}' , $T_{\mathbf{k},\mathbf{k}'}(\omega) = T(\Omega)$.
- (1.e) Show that $T(\omega)$ is of the form

$$T(\omega) = \frac{U}{1 - UF(\omega)}. (2)$$

Obtain an integral expression for $F(\omega)$ containing $N(\epsilon)$, the density of states at energy ϵ .

- (1.f) For d=2, find an exact expression for $F(\omega)$. To avoid divergences in the integral, take a high energy cutoff Λ for the energies involved.
- (1.g) Show that for d=2, any attractive potential has a bound state.

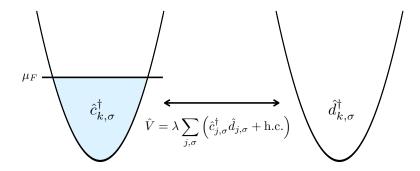
Problem 2 Angle-resolved photoemission spectroscopy (ARPES)

In ARPES the single-particle spectrum can be measured with full energy ω and momentum k resolution. In an experiment, a photon removes an electron from a sample – in this process energy and momentum is conserved.

We model the sample by spin-1/2 fermions $\hat{c}_{k,\sigma}^{\dagger}$ governed by a generic interacting Hamiltonian $\hat{H}_{\mathrm{sample}}$ at temperature T. The process of removing an electron is described by a weak perturbation \hat{V} that locally annihilates a fermion in the sample and creates a fermion in a (non-interacting) probe system $\hat{d}_{j,\sigma}^{\dagger}$. The latter is a non-interacting, free fermion system described by

$$\hat{H}_0 = \sum_{k,\sigma} (\epsilon(k) - \mu) \hat{d}_{k,\sigma}^{\dagger} \hat{d}_{k,\sigma}, \tag{3}$$

with a known dispersion relation $\epsilon(k)$. Here, we consider a 2D square-lattice tight-binding model with $\epsilon(k) = -2t \left[\cos(k_x) + \cos(k_y)\right]$ and an initially empty probe system with $\mu_{\text{probe}} = -4t$. The two systems are initially uncoupled and in equilibrium. At time t=0, we apply the perturbation \hat{V} and calculate the response of the system.



- (2.a) Use Fermi's golden rule to calculate the rate $\Gamma(k,\omega)$ under which fermions tunnel from the sample to the bath. What is the valid parameter regime of the result? Hint: Fermi's golden rule perturbatively describes the rate between an initial and final state given by $\Gamma_{i\to f}=\frac{2\pi}{\hbar}p_i(1-p_f)|\langle f|\hat{V}|i\rangle|^2\delta(E_f-E_i)$, where p_n is the probability that the system is in state $|n\rangle$.
- (2.b) Find a relation between the rate $\Gamma(k,\omega)$ and the spectral function $A(k,\omega)$. You should find that $\Gamma \propto A$, i.e. the emission rate of ejected electrons which can be measured experimentally, gives direct access to the single-particle spectrum of the sample.
- (2.c) Find a relation between the spectral function $A(k,\omega)$ and the Green's function $G(k,\omega)$. $\it Hint:$ Use the Lehman representation.
- (2.d) Now we assume a sample with non-interacting free fermions \hat{c} 's, i.e. $\hat{H}_{\mathrm{sample}} \sim \hat{H}_0$ and we set the temperature to T=0. Sketch the rate $\Gamma(k,\omega)$ for different chemical potentials μ (= filling).
- (2.e) Our model describes the conceptual idea of ARPES. Describe in words what else you have to take into account in an actual solid state experiment.