Problem 1 (16 points)

Consider a column of N real scalar fields

1. Construct the most general Lagrangian (in four spacetime dimensions) which is
Lorentz and O(N) invariant and contains terms with mass dimension at most 4 in
® and its derivatives.

Hint : The O(N) transformation acts on the fields as ¢; = >_; Oi;¢;, with Oy a
(constant) real orthogonal matriz (OTO =1).

2. Find the equations of motion.

3. In its infinitesimal form, an O(V) transformation can be written as

=0y + ZEATA +O(e

where ¢? < 1 are the (constant) parameters of the transformation, TZ‘;‘ are the so-
called generators of O(NV), and A runs over the number of independent generators.
Show that the Tl;‘ are antisymmetric matrices.

4. Find the Noether current associated with the O(N) invariance of the theory. Show
that it is conserved on the equations of motion.

5. Derive the Hamiltonian of this theory.

1

c:%@@ﬁm¢—- A

S(@Te)

27 —
m A

with A > 0.

3 points : 1 for each term (-0.5 points for wrong relative factors/signs)

oL oL
% (0,87) ~ 50 =

(O+m*)® = —\(dTD)d

3 points : 1 for Euler-Lagrange equations, 1 for I+ m?2, 1 for \

3. From
1 =070 = (L+eaT* + O(?)) (L4 ea(T)" + O(6%)) = L+ea (T4 + (TM)7)+0O(e?),

follows
T4 = —(THT Veyu

2 points : 1 for the correct formula, 1 for the end-result
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D= =D+ 60 =4 ,TAD + O()

oL
A _ TrpA
Ju€a= 8(8/@))6(1) = (0,2) T" ey
ot =00 T4 + (0,0)" T9#® = —(m” + A@" )" T + (9,9)" T"0"® = 0
each piece independently is zero, due to symmetric contracted with anti-symmetric.
6 points : 1 for d¢, 1 for % 0¢, 1 for result, 1.5 for using eom, 1.5 for antisymmetry

R

0P
S B S L S S S W (S 5 S R ey S Yoy
H= [|dxH= | dzx(rd-L)= | dx 5T +2(01<I>)81<I>+2m<b¢—|—4(<1><1>)

2 points : 1 for the definition of momenta and Hamiltonian (function of ¢ and 7),
1 for result

Problem 2 (40 points)

Consider the following Lagrangian (in four spacetime dimensions)

1 1 _ _
L= 5(a¢)2 — 5M%f + (i — m)Y — gpys0

Here ¢ is a real scalar field with mass M, 1 the electron-positron field with mass m, g a
coupling constant, and v5 = 1yy717273-

1. Check if the Lagrangian is invariant under ¢ — €1, with o a constant. If so,
derive the corresponding Noether current.
2. Consider the process
eet —weet.
Draw and label the leading-order Feynman diagram or diagrams. Please use p1, po
to indicate the incoming momenta, and ps, ps the outgoing momenta.

3. Derive the spin-averaged amplitude squared in terms of the Mandelstam variables,
in the limit m — 0.

4. Using the above result, derive the spin-averaged amplitude squared for the process
ee —ee .
Hint : You should not need to do any explicit computation.

5. Consider the process ¢ — e*e™. For what masses can this process take place ?

—_

. — 1) and 1 — e since « is a constant real number
(a) ¥y — Py
(b) P — PP
(c) Y51 — ys¢)
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so the Lagrangian is invariant, we get ¢ — ¥ 4+ iay) + O(a?) and ¥ — ¥ — i) +
O(a?)
oL

9(0u1))

since the Lagrangian does not depend on 0.

S iva =~ pa

o =

5 points : 3 for each fermion term, 2 points for current

. Figures :

3 /)/'\\l b

6 points : 3 for each diagram (2 for drawing, 1 for labeling )
. 21 points :

. o , . i . : "
iM = (P, s2)(—ig)y5u(P1, 51) (P + Po)? — Mzu(p3,83)(—19>75v(]?4, S4)—

i

Pl — P3>2 _ MQ’D(ﬁQ’ 52)<_ig>757](ﬁ47 84) — _292(/\45 B Mt)

u(ps, 3)(—ig)ysu(pi, s1) (

2+1 (1 for the correct vertex) points for each part + 1 point for the correct relative
sign

using Mandelstam variables, denoting u(pj, s;) = u;, v(pj, s;) = v; and averaging
amplitude

1 4 * *
Do IMP = 3T IMP + M = (MM + MoM3)

s

1 point for the correct formula above

ZIM 2 = M2 Ztr Y5 VoV Y5 U1 Up )T (Y5UslisY504Ts) =

1

- (=1)?
= e s Poys Prltr[vs Psys Pa) = Wl(ﬁ(ﬂg)(&p@

3 points for the correct computation (2 points for trace, 1 for spin averaging)

Z IM.[* = Z tr(Vsustizysurlin )ir(Y5v20275v401) =

1

_ (=1)”
= m s Pasvs Prltr(ys Povs Pyl = mlG(Png)(PQPLl)
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3 points for the correct computation (2 points for trace, 1 for spin averaging)

* 1 — — — —
ngMt - (t _ M2>(8 _ M2) ;tr(U4U4'75U2U2’)/5U1U175U3U3’y5) =
1
- (t _ MQ)(S — Mg) ;tr(}bﬂs}bﬂs)}bﬂs)}b:s%) =

== 5\;))(; _4 e (PLP)(PsPy) + (PoPy)(PLPs) — (PP)(PLPy)) = Y - MM,

3 points for both the above terms (1.5 each)
For showing explicitly the 75 manipulations (changing the sign of M* and correct
sign when anticommuting 75) we give 1 + 1 points, in total

(PLPs) = (P Py) = —

(PLPy) = (P3Py) =

NN | o+

(PLPy) = (P P3) = —

1 point for the above

2

Lot |8 2 1 s+
Z4|M| =9 [(S_M2)2+(t_M)2 2(s—M?»)(t—M?)]|’

S

or, using u? = (s + )%,

I s t2 st
zs: M= [(s AR T G- ME (5 M- M)
1 point for the final result
4 IM(e™(P)e™ () — e (Ps)e™ (Py)) P = [M(e™(Pr)e™ (= Py) = ™ (Py)e™ (= 12))?
which means s <> w and t <> ¢

1 u? t? ut
~|M]? =g" + +
; ME=9 = Tt s e
5 points : 3 for exchanging momenta, 2 for Mandelstam
5. Energy-momentum conservation requires M > 2m. But for M = 2m amplitude is
identically zero, so we need M > 2m.
3 points : 2 for >, +1 for the stricter bound > (including the explanation that the
amplitude vanishes for M = 2m)

Problem 3 (22 points)
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1. Write down the QED Lagrangian.
2. Derive the equations of motion for the fields.

3. Write down the Feynman diagrams for the process e™y — e~y and show that the
corresponding amplitude can be written as

iM = e"(ky)e” (ko) A, .

Hint : You don’t need to fully simplify your result.
4. Show that k{'A,, = 0 and explain why this is expected.

Hint : Use four-momentum conservation and Dirac equation in momentum space.
1 w7 -
L=—7FuF"+ V(i — m)y — e Ap

3 points : 1 for each term. If they use covariant derivative they should define and
explain

oc >_a£:O

O (8(0”141,) 0A,
oy {—%F“B (8454 — 5555)} + ey’ =0
~0,F" + el = 0
oL oL
o) ——=]—-——=—==0

(56) ~ 5

(i — m) = efop

with same manner

10, 07" + map = —ep A

4 points : 1 for E-L, 2 for photon (1 for explicit calculation), 1 for fermions

3. 7 points :
Figures :
Pn P ?
'\‘) /7

P\_\ 5 ///72
| ’/ :
/ﬂ"' \} //

A he

A~
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2 points for each diagram (1 for drawing, 1 for labeling )

— —

iM = tg(—ie)y* (—ie)y" ure,(ka)e, (k) +

i
Pi+h—m
'L’ — —

+ﬁ2(—i6)7”m(—ie)VVU1€u(k1)€u(k2)

2 points, 1 for each term
iM = e, (k1 )e, (k) A" | with

1 1
A“V:—Z'GQ 17, R ‘uU, +I_L o VU
[” Piiki—m TR T m }

1 point for writing A*” explicitly
4. 8 points :

k1 AW = —ie? | gy —————F uy + Uy —— " }
1p { 27" P1+/§/1 %1 1 2%1P1 %_
Using (P, — m)u; = 0 and @iy (Py — m) = 0, we get

Fyuy = (k1 + Py —m)uy =y

1
Pi+—m P1+]?/1
and

_ﬂ27

= U (fy — Py +m)

_ 1 1 B
uz;élpl—%—m PQ‘%1_m_

2 points for each term for using Dirac equation + 2 points in total for momentum
conservation

so we get
kl,quj X ﬂg’}/”ul - ﬂg'y”ul = 0.

1 point for the final result
This result shows, that on physical amplitudes longitudinal photon vanishes.

1 point for explanation (simply writing Ward identity or current conservation is
not enough)

Problem 4 (22 points)

1. Using a complex scalar field ¢ with mass m, and the photon A,, write down the
most general Lorentz and U(1) gauge invariant Lagrangian up to (and including)
terms of mass dimension 4.

2. Draw and label the two one-loop Feynman diagrams associated with the photon
vacuum polarization in this theory.

Page 6 of 8



3. Now work in four spacetime dimensions and check that ¢*II,,(¢) = 0.
Hint : You do not need to explicitly carry out the integrals. Use the relation

+2qk + ¢* = (k + q)? — m? — (k* — m?).
1 uy * T 2 % A * 1\2
L= _ZFMVF + (Dyg) DF e — m¢¢ ¢ — Z(Cb ¢)
with D, = 9,—ieA,, since under ¢ — €@ ¢, ¢*¢ is invariant and D,¢ — €D, ¢,

which makes kinetic term invariant as well. One could also expand the scalar kinetic
term directly :

(Dug) D¢ = (0,0)"0"¢ — ieA" ($0,0" — ¢"0u0) + €* A, A" 69"

6 points total : 1 for each term

2. Figure :
k
P
2 k9 e
/ )
~>\.:L ‘ ’
wr . \ /
De—— N -
4 —> \"\f,/’ - /‘ ~3 __.) %
q ~— q 9

6 points : 3 for each diagram (2 for drawing, 1 for labeling )
3. 10 points :

d*k 1 i ‘K '
11(q) . = e)(2k — = (1e)(2k,+q, 2ie%1,, ——
ill(q), / (2ﬂ)4(ze)( ) v af et (ie)(2k,+q )k2 — mi—i-/ 720 5 :

4 points, 2 for each term

d4k 1 1 d4]€ 1
T Al L =e? 2k N (2%, V—_QQV/ 72 _ 2
tq (Q)M € / (2ﬂ)4( A )(kj + q)2 — mé( +a )k2 —m? cq (27T)4 k2
Using the hint, we get

(2kq + ¢*) 77— 2k + @)
(k+q)* —mj

k? —mj [(k +q)? — mZ][k* — m]]

1 point for using the hint correctly
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which gives
4

iq"(q) = € / %(%ﬁqy)

In the second term, substituting £ + ¢ = [, we get

d*k 2k, +q d'l 21, —q 'k 1
_ _ 2 Sy Ty e v v o2 ,,/ .
ig" (@) = € / (2m)4 k2 —m3 ‘ / (2m)* 12 — m} 1 (2m)* k2 — m3

1 1 d*k
— —2e%q, | —— .
k2—m>  (k+q)? —m] (2m)* k% —m2

3 points for substitution
Relabeling | — k, we get ¢*11(q),, = 0.
2 points for end-result
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