Problem 1 (16 points)

Consider a column of N real scalar fields

$$\Phi(x) = \begin{pmatrix} \phi_1(x) \\ \phi_2(x) \\ \vdots \\ \phi_N(x) \end{pmatrix}$$

1. Construct the most general Lagrangian (in four spacetime dimensions) which is Lorentz and O(N) invariant and contains terms with mass dimension at most 4 in Φ and its derivatives.

Hint: The O(N) transformation acts on the fields as $\phi'_i = \sum_j O_{ij}\phi_j$, with O_{ij} a (constant) real orthogonal matrix $(O^TO = 1)$.

- 2. Find the equations of motion.
- 3. In its infinitesimal form, an O(N) transformation can be written as

$$O_{ij} = \delta_{ij} + \sum_{A} \epsilon_{A} T_{ij}^{A} + \mathcal{O}(\epsilon^{2}) ,$$

where $\epsilon^A \ll 1$ are the (constant) parameters of the transformation, T^A_{ij} are the so-called generators of O(N), and A runs over the number of independent generators. Show that the T^A_{ij} are antisymmetric matrices.

- 4. Find the Noether current associated with the O(N) invariance of the theory. Show that it is conserved on the equations of motion.
- 5. Derive the Hamiltonian of this theory.

1.

$$\mathcal{L} = \frac{1}{2} (\partial_{\mu} \Phi)^T \partial^{\mu} \Phi - \frac{1}{2} m^2 \Phi^T \Phi - \frac{\lambda}{4} (\Phi^T \Phi)^2 ,$$

with $\lambda > 0$.

3 points: 1 for each term (-0.5 points for wrong relative factors/signs)

2.

$$\partial_{\mu} \left(\frac{\partial \mathcal{L}}{\partial (\partial_{\mu} \Phi)} \right) - \frac{\partial \mathcal{L}}{\partial \Phi} = 0$$

$$(\Box + m^2)\Phi = -\lambda(\Phi^T\Phi)\Phi$$

3 points : 1 for Euler-Lagrange equations, 1 for $\Box + m^2$, 1 for λ

3. From

$$\mathbb{1} = O^T O = \left(\mathbb{1} + \epsilon_A T^A + \mathcal{O}(\epsilon^2)\right) \left(\mathbb{1} + \epsilon_A (T^A)^T + \mathcal{O}(\epsilon^2)\right) = \mathbb{1} + \epsilon_A \left(T^A + (T^A)^T\right) + \mathcal{O}(\epsilon^2),$$

follows

$$T^A = -(T^A)^T \quad \forall \ \epsilon_A.$$

2 points: 1 for the correct formula, 1 for the end-result

4.

$$\Phi \to \Phi' = \Phi + \delta \Phi = \Phi + \epsilon_A T^A \Phi + \mathcal{O}(\epsilon^2)$$

$$j_{\mu}^{A} \epsilon_{A} = \frac{\partial \mathcal{L}}{\partial (\partial^{\mu} \Phi)} \delta \Phi = (\partial_{\mu} \Phi)^{T} T^{A} \Phi \epsilon_{A}$$

$$\partial^{\mu}j_{\mu}^{A} = \Box\Phi^{T}T^{A}\Phi + (\partial_{\mu}\Phi)^{T}T^{A}\partial^{\mu}\Phi = -(m^{2} + \lambda\Phi^{T}\Phi)\Phi^{T}T^{A}\Phi + (\partial_{\mu}\Phi)^{T}T^{A}\partial^{\mu}\Phi = 0$$

each piece independently is zero, due to symmetric contracted with anti-symmetric.

6 points: 1 for $\delta \phi$, 1 for $\frac{\partial \mathcal{L}}{\partial (\partial \phi)} \delta \phi$, 1 for result, 1.5 for using eom, 1.5 for antisymmetry

5.

$$\pi = \frac{\partial \mathcal{L}}{\partial \dot{\Phi}} = \dot{\Phi}^T$$

$$H = \int d^3x \mathcal{H} = \int d^3x \left(\pi \dot{\Phi} - \mathcal{L} \right) = \int d^3x \left(\frac{1}{2} \pi \pi^T + \frac{1}{2} (\partial_i \Phi)^T \partial_i \Phi + \frac{1}{2} m^2 \Phi^T \Phi + \frac{\lambda}{4} (\Phi^T \Phi)^2 \right)$$

2 points : 1 for the definition of momenta and Hamiltonian (function of ϕ and π), 1 for result

Problem 2 (40 points)

Consider the following Lagrangian (in four spacetime dimensions)

$$\mathcal{L} = \frac{1}{2}(\partial\phi)^2 - \frac{1}{2}M^2\phi^2 + \bar{\psi}(i\partial\!\!\!/ - m)\psi - g\phi\bar{\psi}\gamma_5\psi .$$

Here ϕ is a real scalar field with mass M, ψ the electron-positron field with mass m, g a coupling constant, and $\gamma_5 = i\gamma_0\gamma_1\gamma_2\gamma_3$.

- 1. Check if the Lagrangian is invariant under $\psi \to e^{i\alpha}\psi$, with α a constant. If so, derive the corresponding Noether current.
- 2. Consider the process

$$e^{-}e^{+} \rightarrow e^{-}e^{+}$$

Draw and label the leading-order Feynman diagram or diagrams. Please use p_1, p_2 to indicate the incoming momenta, and p_3, p_4 the outgoing momenta.

- 3. Derive the spin-averaged amplitude squared in terms of the Mandelstam variables, in the limit $m \to 0$.
- 4. Using the above result, derive the spin-averaged amplitude squared for the process

$$e^-e^- \rightarrow e^-e^-$$
.

Hint: You should not need to do any explicit computation.

- 5. Consider the process $\phi \to e^+e^-$. For what masses can this process take place?
- 1. $\psi \to e^{i\alpha}\psi$ and $\bar{\psi} \to e^{-i\alpha}\bar{\psi}$ since α is a constant real number
 - (a) $\bar{\psi}\psi \to \bar{\psi}\psi$
 - (b) $\bar{\psi}\partial\psi \to \bar{\psi}\partial\psi$
 - (c) $\bar{\psi}\gamma_5\psi \rightarrow \bar{\psi}\gamma_5\psi$

so the Lagrangian is invariant, we get $\psi \to \psi + i\alpha\psi + \mathcal{O}(\alpha^2)$ and $\bar{\psi} \to \bar{\psi} - i\alpha\bar{\psi} + \mathcal{O}(\alpha^2)$

$$j^{\mu}\alpha = \frac{\partial \mathcal{L}}{\partial(\partial_{\mu}\psi)}i\psi\alpha = -\bar{\psi}\gamma^{\mu}\psi\alpha$$

since the Lagrangian does not depend on $\partial \bar{\psi}$.

5 points: 3 for each fermion term, 2 points for current

2. Figures:

6 points: 3 for each diagram (2 for drawing, 1 for labeling)

3. 21 points:

$$i\mathcal{M} = \bar{v}(\vec{p}_{2}, s_{2})(-ig)\gamma_{5}u(\vec{p}_{1}, s_{1})\frac{i}{(P_{1} + P_{2})^{2} - M^{2}}\bar{u}(\vec{p}_{3}, s_{3})(-ig)\gamma_{5}v(\vec{p}_{4}, s_{4}) - \bar{u}(\vec{p}_{3}, s_{3})(-ig)\gamma_{5}u(\vec{p}_{1}, s_{1})\frac{i}{(P_{1} - P_{3})^{2} - M^{2}}\bar{v}(\vec{p}_{2}, s_{2})(-ig)\gamma_{5}v(\vec{p}_{4}, s_{4}) = -ig^{2}(\mathcal{M}_{s} - \mathcal{M}_{t})$$

2+1 (1 for the correct vertex) points for each part + 1 point for the correct relative sign

using Mandelstam variables, denoting $u(\vec{p}_j, s_j) = u_j$, $v(\vec{p}_j, s_j) = v_j$ and averaging amplitude

$$\sum_{s} \frac{1}{4} |\mathcal{M}|^2 = \sum_{s} \frac{g^4}{4} (|\mathcal{M}_s|^2 + |\mathcal{M}_t|^2 - (\mathcal{M}_s \mathcal{M}_t^* + \mathcal{M}_t \mathcal{M}_s^*))$$

1 point for the correct formula above

$$\begin{split} &\sum_{s} |\mathcal{M}_{s}|^{2} = \frac{1}{(s-M^{2})^{2}} \sum_{s} tr(\gamma_{5}v_{2}\bar{v}_{2}\gamma_{5}u_{1}\bar{u}_{1})tr(\gamma_{5}u_{3}\bar{u}_{3}\gamma_{5}v_{4}\bar{v}_{4}) = \\ &= \frac{1}{(s-M^{2})^{2}} tr[\gamma_{5} \not \!\!P_{2}\gamma_{5} \not \!\!P_{1}]tr[\gamma_{5} \not \!\!P_{3}\gamma_{5} \not \!\!P_{4}] = \frac{(-1)^{2}}{(s-M^{2})^{2}} 16(P_{1}P_{2})(P_{3}P_{4}) \end{split}$$

3 points for the correct computation (2 points for trace, 1 for spin averaging)

$$\sum_{s} |\mathcal{M}_{t}|^{2} = \frac{1}{(t - M^{2})^{2}} \sum_{s} tr(\gamma_{5}u_{3}\bar{u}_{3}\gamma_{5}u_{1}\bar{u}_{1})tr(\gamma_{5}v_{2}\bar{v}_{2}\gamma_{5}v_{4}\bar{v}_{4}) =$$

$$= \frac{1}{(t - M^{2})^{2}} tr[\gamma_{5} \not P_{3}\gamma_{5} \not P_{1}]tr[\gamma_{5} \not P_{2}\gamma_{5} \not P_{4}] = \frac{(-1)^{2}}{(t - M^{2})^{2}} 16(P_{1}P_{3})(P_{2}P_{4})$$

3 points for the correct computation (2 points for trace, 1 for spin averaging)

$$\sum_{s} \mathcal{M}_{s} \mathcal{M}_{t}^{*} = \frac{1}{(t - M^{2})(s - M^{2})} \sum_{s} tr(v_{4} \bar{v}_{4} \gamma_{5} v_{2} \bar{v}_{2} \gamma_{5} u_{1} \bar{u}_{1} \gamma_{5} u_{3} \bar{u}_{3} \gamma_{5}) =$$

$$= \frac{1}{(t - M^{2})(s - M^{2})} \sum_{s} tr(\not P_{4} \gamma_{5} \not P_{2} \gamma_{5} \not P_{1} \gamma_{5} \not P_{3} \gamma_{5}) =$$

$$= \frac{(-1)^{2} \cdot 4}{(t - M^{2})(s - M^{2})} ((P_{1} P_{2})(P_{3} P_{4}) + (P_{2} P_{4})(P_{1} P_{3}) - (P_{2} P_{3})(P_{1} P_{4})) = \sum_{s} \mathcal{M}_{t} \mathcal{M}_{s}^{*}$$

3 points for both the above terms (1.5 each)

For showing explicitly the γ_5 manipulations (changing the sign of M^* and correct sign when anticommuting γ_5) we give 1 + 1 points, in total

$$(P_1P_3) = (P_2P_4) = -\frac{t}{2}$$
$$(P_1P_2) = (P_3P_4) = \frac{s}{2}$$
$$(P_1P_4) = (P_2P_3) = -\frac{u}{2}$$

1 point for the above

$$\sum_{s} \frac{1}{4} |\mathcal{M}|^2 = g^4 \left[\frac{s^2}{(s-M^2)^2} + \frac{t^2}{(t-M)^2} - \frac{1}{2} \frac{s^2 + t^2 - u^2}{(s-M^2)(t-M^2)} \right],$$

or, using $u^2 = (s+t)^2$,

$$\sum_{s} \frac{1}{4} |\mathcal{M}|^2 = g^4 \left[\frac{s^2}{(s-M^2)^2} + \frac{t^2}{(t-M)^2} + \frac{st}{(s-M^2)(t-M^2)} \right].$$

1 point for the final result

4. $|\mathcal{M}(e^-(P_1)e^-(P_2) \to e^-(P_3)e^-(P_4))|^2 = |\mathcal{M}(e^-(P_1)e^+(-P_4) \to e^-(P_3)e^+(-P_2))|^2$ which means $s \leftrightarrow u$ and $t \leftrightarrow t$

$$\sum_{s} \frac{1}{4} |\mathcal{M}|^2 = g^4 \left[\frac{u^2}{(u - M^2)^2} + \frac{t^2}{(t - M)^2} + \frac{ut}{(u - M^2)(t - M^2)} \right]$$

5 points: 3 for exchanging momenta, 2 for Mandelstam

- 5. Energy-momentum conservation requires $M \geq 2m$. But for M = 2m amplitude is identically zero, so we need M > 2m.
 - 3 points : 2 for \geq , +1 for the stricter bound > (including the explanation that the amplitude vanishes for M=2m)

Problem 3 (22 points)

- 1. Write down the QED Lagrangian.
- 2. Derive the equations of motion for the fields.
- 3. Write down the Feynman diagrams for the process $e^-\gamma \to e^-\gamma$ and show that the corresponding amplitude can be written as

$$i\mathcal{M} = \epsilon^{\mu}(\vec{k}_1)\epsilon^{\nu}(\vec{k}_2)\mathcal{A}_{\mu\nu}$$
.

Hint: You don't need to fully simplify your result.

4. Show that $k_1^{\mu} \mathcal{A}_{\mu\nu} = 0$ and explain why this is expected.

Hint: Use four-momentum conservation and Dirac equation in momentum space.

1.

$$\mathcal{L} = -\frac{1}{4}F_{\mu\nu}F^{\mu\nu} + \bar{\psi}(i\partial \!\!\!/ - m)\psi - e\bar{\psi}A\!\!\!/\psi$$

3 points: 1 for each term. If they use covariant derivative they should define and explain

2.

$$\begin{split} \partial_{\mu} \left(\frac{\partial \mathcal{L}}{\partial (\partial_{\mu} A_{\nu})} \right) - \frac{\partial \mathcal{L}}{\partial A_{\nu}} &= 0 \\ \partial_{\mu} \left[-\frac{1}{2} F^{\alpha\beta} \left(\delta^{\mu}_{\alpha} \delta^{\nu}_{\beta} - \delta^{\mu}_{\beta} \delta^{\nu}_{\alpha} \right) \right] + e \bar{\psi} \gamma^{\nu} \psi &= 0 \\ - \partial_{\mu} F^{\mu\nu} + e \bar{\psi} \gamma^{\nu} \psi &= 0 \\ \partial_{\mu} \left(\frac{\partial \mathcal{L}}{\partial (\partial_{\mu} \bar{\psi})} \right) - \frac{\partial \mathcal{L}}{\partial \bar{\psi}} &= 0 \\ (i \partial \!\!\!/ - m) \psi &= e A \!\!\!/ \psi \end{split}$$

with same manner

$$i\partial_{\mu}\bar{\psi}\gamma^{\mu}+m\bar{\psi}=-e\bar{\psi}A\!\!\!/$$

4 points: 1 for E-L, 2 for photon (1 for explicit calculation), 1 for fermions

3. 7 points :

2 points for each diagram (1 for drawing, 1 for labeling)

2 points, 1 for each term

$$i\mathcal{M} = \epsilon_{\mu}(\vec{k}_1)\epsilon_{\nu}(\vec{k}_2)A^{\mu\nu}$$
, with

$$A^{\mu\nu} = -ie^2 \left[\bar{u}_2 \gamma^{\nu} \frac{1}{\rlap/P_1 + \rlap/l_1 - m} \gamma^{\mu} u_1 + \bar{u}_2 \gamma^{\mu} \frac{1}{\rlap/P_1 - \rlap/l_2 - m} \gamma^{\nu} u_1 \right]$$

1 point for writing $A^{\mu\nu}$ explicitly

4. 8 points:

$$k_{1\mu}A^{\mu\nu} = -ie^2 \left[\bar{u}_2 \gamma^{\nu} \frac{1}{\not \! P_1 + \not \! k_1 - m} \not \! k_1 u_1 + \bar{u}_2 \not \! k_1 \frac{1}{\not \! P_1 - \not \! k_2 - m} \gamma^{\nu} u_1 \right]$$

Using $(\not\!\!P_1 - m)u_1 = 0$ and $\bar{u}_2(\not\!\!P_2 - m) = 0$, we get

$$\frac{1}{P_1 + k_1 - m} k_1 u_1 = \frac{1}{P_1 + k_1 - m} (k_1 + P_1 - m) u_1 = u_1$$

and

$$\bar{u}_2 \rlap/k_1 \frac{1}{\rlap/p_1 - \rlap/k_2 - m} = \bar{u}_2 (\rlap/k_1 - \rlap/p_2 + m) \frac{1}{\rlap/p_2 - \rlap/k_1 - m} = -\bar{u}_2,$$

2 points for each term for using Dirac equation + 2 points in total for momentum conservation

so we get

$$k_{1\mu}A^{\mu\nu} \propto \bar{u}_2 \gamma^{\nu} u_1 - \bar{u}_2 \gamma^{\nu} u_1 = 0.$$

1 point for the final result

This result shows, that on physical amplitudes longitudinal photon vanishes.

1 point for explanation (simply writing Ward identity or current conservation is not enough)

Problem 4 (22 points)

- 1. Using a complex scalar field ϕ with mass m_{ϕ} and the photon A_{μ} , write down the most general Lorentz and U(1) gauge invariant Lagrangian up to (and including) terms of mass dimension 4.
- 2. Draw and label the two one-loop Feynman diagrams associated with the photon vacuum polarization in this theory.

- 3. Now work in four spacetime dimensions and check that $q^{\mu}\Pi_{\mu\nu}(q) = 0$. Hint: You do not need to explicitly carry out the integrals. Use the relation $\pm 2qk + q^2 = (k \pm q)^2 - m^2 - (k^2 - m^2)$.
- 1. $\mathcal{L} = -\frac{1}{4}F_{\mu\nu}F^{\mu\nu} + (D_{\mu}\phi)^*D^{\mu}\phi m_{\phi}^2\phi^*\phi \frac{\lambda}{4}(\phi^*\phi)^2$

with $D_{\mu} = \partial_{\mu} - ieA_{\mu}$, since under $\phi \to e^{i\alpha(x)}\phi$, $\phi^*\phi$ is invariant and $D_{\mu}\phi \to e^{i\alpha}D_{\mu}\phi$, which makes kinetic term invariant as well. One could also expand the scalar kinetic term directly:

$$(D_{\mu}\phi)^*D^{\mu}\phi = (\partial_{\mu}\phi)^*\partial^{\mu}\phi - ieA^{\mu}(\phi\partial_{\mu}\phi^* - \phi^*\partial_{\mu}\phi) + e^2A_{\mu}A^{\mu}\phi\phi^*$$

6 points total: 1 for each term

2. Figure:

6 points: 3 for each diagram (2 for drawing, 1 for labeling)

3. 10 points:

$$i\Pi(q)_{\mu\nu} = \int \frac{d^4k}{(2\pi)^4} (ie)(2k_\mu + q_\mu) \frac{i}{(k+q)^2 - m_\phi^2} (ie)(2k_\nu + q_\nu) \frac{i}{k^2 - m_\phi^2} + \int \frac{d^4k}{(2\pi)^4} 2ie^2 \eta_{\mu\nu} \frac{i}{k^2 - m_\phi^2}$$

4 points, 2 for each term

$$iq^{\mu}\Pi(q)_{\mu\nu} = e^2 \int \frac{d^4k}{(2\pi)^4} (2kq + q^2) \frac{1}{(k+q)^2 - m_{\phi}^2} (2k_{\nu} + q_{\nu}) \frac{1}{k^2 - m_{\phi}^2} - 2e^2 q_{\nu} \int \frac{d^4k}{(2\pi)^4} \frac{1}{k^2 - m_{\phi}^2}.$$

Using the hint, we get

$$(2kq+q^2)\frac{1}{(k+q)^2-m_{\phi}^2}(2k_{\nu}+q_{\nu})\frac{1}{k^2-m_{\phi}^2} = (2k_{\nu}+q_{\nu})\frac{(k+q)^2-m_{\phi}^2-(k^2-m_{\phi}^2)}{[(k+q)^2-m_{\phi}^2][k^2-m_{\phi}^2]} =$$

$$= (2k_{\nu}+q_{\nu})\left[\frac{1}{k^2-m_{\phi}^2}-\frac{1}{(k+q)^2-m_{\phi}^2}\right],$$

1 point for using the hint correctly

which gives

$$iq^{\mu}\Pi(q)_{\mu\nu} = e^2 \int \frac{d^4k}{(2\pi)^4} (2k_{\nu} + q_{\nu}) \left[\frac{1}{k^2 - m_{\phi}^2} - \frac{1}{(k+q)^2 - m_{\phi}^2} \right] - 2e^2 q_{\nu} \int \frac{d^4k}{(2\pi)^4} \frac{1}{k^2 - m_{\phi}^2}.$$

In the second term, substituting k + q = l, we get

$$iq^{\mu}\Pi(q)_{\mu\nu} = e^2 \int \frac{d^4k}{(2\pi)^4} \frac{2k_{\nu} + q_{\nu}}{k^2 - m_{\phi}^2} - e^2 \int \frac{d^4l}{(2\pi)^4} \frac{2l_{\nu} - q_{\nu}}{l^2 - m_{\phi}^2} - 2e^2 q_{\nu} \int \frac{d^4k}{(2\pi)^4} \frac{1}{k^2 - m_{\phi}^2}.$$

3 points for substitution

Relabeling $l \to k$, we get $q^{\mu}\Pi(q)_{\mu\nu} = 0$.

2 points for end-result