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(b)[2](E/M/A) means: problem (b) counts 2 points and is easy/medium hard/advanced
Suggestions for central tutorial: example problems 9, 10, 4, 3.

Videos exist for example problems 9 (C2.3.1), 10 (C2.3.3).

Optional Problem 1: Group of discrete translations in one dimension [4]
Points: (a)[2](E); (b)[2](M)

In this problem we show that discrete translations on an infinite, one-dimensional lattice form a
group. Let us denote the lattice constant, i.e. the fixed distance between neighboring lattice points,
by λ ∈ R+, a positive, real number. The lattice G consists of the set of all integer multiples of λ,
i.e. G ≡ λZ ≡ {x ∈ R|∃n ∈ Z : x = λ · n}, where · is the usual multiplication rule in R. Note
that for any given x ∈ G, n is uniquely determined. On this lattice we define ‘translation’ by the
group operation

T : G×G→ G, (x, y) 7→ T (x, y) ≡ x+ y,

where + denotes the usual addition of real numbers. Since this operation is symmetric, it can be
visualized in two equivalent ways: T (x, y) describes (i) a ‘shift’ or a ‘translation’ of lattice point
x by the distance y, or (ii) a translation of lattice point y by the distance x. [Figure (a), where
λ = 1

3
, shows both visualizations of T (2

3
, 4
3
).]
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(a) Show that (G, T ) forms an abelian group.

(b) For a given y ∈ G we now define, in accordance with visualization (i), a ‘translation’ of the
lattice by y, i.e. each lattice point x is ‘shifted’ by y:

Ty : G→ G, x 7→ Ty(x) ≡ T (x, y).

[Figure (b), where λ = 1
3
, shows T 2

3
.] Now consider the set of all such translations, T ≡

{Ty, y ∈ G}. Show that (T, ) forms an abelian group, where is defined as

: T×T→ T, (Tx, Ty) 7→ Tx Ty ≡ TT (x,y).

Remark: the set T underlying this group consists of maps (namely translations), illustrating
that the set underlying a group need not be ‘simple’.

Optional Problem 2: Group of discrete translations on a ring [4]
Points: (a)[2](M); (b)[2](M)
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In this problem we show that discrete translations on a finite, one-dimensional lattice with periodic
boundary conditions form a group. Consider a ring with radius 0 < R ∈ R and lattice constant
λ = 2πR/N with N ∈ N, thus G ≡ λ(ZmodN) ≡ {x ∈ R|∃n ∈ {0, 1, . . . , N − 1} : x = λ · n},
where · is the usual multiplication rule in R. Note that for any given x ∈ G, n is uniquely
determined. The ring forms a ‘periodic’ structure: when counting its sites, 0λ and Nλ describe
the same lattice site, the same is true for 1λ and (1 + N)λ, for 2λ and (2 + N)λ, etc. On this
lattice we define a group operation, corresponding to a ‘translation’, using addition modulo N :

T : G×G→ G, (x, y) = (λ · nx, λ · ny) 7→ T (x, y) ≡ λ · ((nx + ny)modN).

Here + is the usual addition of integers, and nmodN (spoken as ‘n mod N ’) is defined as the
integer remainder after division of n by N (e.g. 9mod 8 = 1). [For N = 8, figure (a) shows two
visualizations of the translation T (4λ, 5λ): as a ‘shift’ of the lattice site 4λ by the distance 5λ
along the ring, or of the site 5λ by the distance 4λ.]
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(a) Show that (G, T ) forms an abelian group.

(b) For a given y ∈ G we now define a ‘translation’ of the lattice by y,

Ty : G→ G, x 7→ Ty(x) ≡ T (x, y)

i.e. each site x is ‘shifted’ by y along the ring. [For N = 8, figure (b) shows the translation
T2λ]. Now consider the set of all such translations, T ≡ {Ty, y ∈ G}. Show that (T, )
forms an abelian group, where the group operation is defined as

: T×T→ T, (Tx, Ty) 7→ Tx Ty ≡ TT (x,y).

Optional Problem 3: L’Hôpital’s rule [4]
Points: (a)[0,5](E); (b)[0,5](E); (c)[1](M); (d)[1](M); (e)[1](M)

Consider the following question: what is the limiting value of the ratio, limx→x0
f(x)
g(x)

, if the functions

f and g both vanish at the point x0? The naive answer, f(x0)
g(x0)

?
= 0

0
, is ill-defined. However, if both

functions have a finite slope at x0, we may use a linear approximation for both, f(x0 + δ) '
0 + δf ′(x0) and g(x0 + δ) ' 0 + δg′(x0), to obtain limx→x0

f(x)
g(x)

= f ′(x0)
g′(x0)

. This result is a special
case of L’Hôpital’s rule.
The general formulation of L’Hôpital’s rule is: If either limx→x0 f(x)= limx→x0 g(x) = 0 or

limx→x0 |f(x)|= limx→x0 |g(x)| =∞, and the limit limx→x0
f ′(x)
g′(x)

exists, then

lim
x→x0

f(x)

g(x)
= lim

x→x0

f ′(x)

g′(x)
. (1)
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The proof of this general statement is non-trivial, but is a standard topic in calculus textbooks.

Use L’Hôpital’s rule to evaluate the following limits as functions of the real number a: [Check your
results against those in square brackets, where [a, b] means that the limit L(a) = b.]

(a) lim
x→1

x2 + (a− 1)x− a
x2 + 2x− 3

[3, 1] (b) lim
x→0

sin(ax)

x+ ax2
[2, 2]

If not only f and g but also f ′ and g′ all vanish at x0, the limit on the r.h.s. of L’Hôpital’s rule
may be evaluated by applying the rule a second time (or n+ 1 times, if the derivatives up to f (n)

and g(n) all vanish at x0). Use this procedure to evaluate the following limits:

(c) lim
x→0

1− cos(ax)

sin2 x
, [4, 8] (d) lim

x→0

x3

sin(ax)− ax.
[
2,−3

4

]
(e) Use L’Hôpital’s rule to show that limx→0(x lnx) = 0 (with x > 0). This result implies that

for x→ 0, ‘x decreases more quickly than ln(x) diverges’, i.e. ‘linear beats log’.

Optional Problem 4: L’Hôpital’s rule [4]
Points: (a)[0,5](E); (b)[0,5](E); (c)[1](M); (d)[1](M); (e)[1](M)

Use L’Hôpital’s rule (possibly multiple times) to evaluate the following limits as functions of the
real number a: [Check your results: [a, b] means that the limit L(a) = b.]

(a) lim
x→a

x2 + (2− a)x− 2a

x2 − (a+ 1)x+ a
[2, 4] (b) lim

x→0

sinh(x)

tanh(ax)

[
2, 1

2

]
(c) lim

x→0

ex
2 − 1

(eax − 1)2
[
2, 1

2

]
(d) lim

x→0

cosh(ax) + cos(ax)− 2

x4
[
2, 4

3

]
(e) Use L’Hôpital’s rule to show that for α ∈ R and 0 < β ∈ R we have

lim
x→0

(xβ lnα x) = 0 (with x > 0),

i.e. ‘any positive power law beats any power of log’.

[Total Points for Optional Problems: 16]
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