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• The concept of ion trajectory for different detector configuration plays a crucial role in the forward-projection model,
which is a foundation in ion imaging

𝑊𝐸𝑇 ≠ 𝐴 ∗ 𝑅𝑆𝑃𝑡 (t for “ground truth”)

• However, in clinical scenarios the intrinsic inconsistencies of the forward-projection model are in the same order of
magnitude of the inaccuracies of the semi-empirical calibration of the X-ray CT

• Relying on Monte Carlo simulations, the normalized
root mean square error between the ion radiography
and the forward-projection of the ground truth ion
CT image is 1-2.5% for list-mode detector
configuration and up to 2.5-5% for integration-mode
detector configuration

Gianoli et al. 2020 Phys. Med. Biol.

Detector configuration and ion trajectories



Tomographic image reconstruction

• Tomographic image reconstruction is applied to several ion radiographies, with projection angles covering 180°

• The ordered subsets simultaneous algebraic reconstruction technique (OS-SART) coupled with total variation
superiorization currently represents the state-of-the-art in ion imaging1,2,3

• Information redundancy mitigates the intrinsic inaccuracies of the forward-projection model4
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1Penfold et al. 2010 Med. Phys. 2Meyer et al. 2019 Phys. Med. Biol. 3Meyer et al. 2021 Phys. Med. Biol. 
4Gianoli et al. 2019 Phys. Med.



Ordered Subsets

• The ordered subsets (OS) approach is introduced to accelerate numerical image reconstruction

• In OS approach, instead of accessing all projections simultaneously for updating the image, the image is updated relaying
on a subset of projections

• ART can be interpreted as OS-SART with only one projection per subset and SART can be interpreted as OS-SART with only
one subset

• An update performed using a single
subset is called a sub-iteration

• An iteration is completed when all
subsets have been processed once

• The convergence acceleration is
expressed in terms of number of
iterations (not sub-iterations)



Ordered Subsets

• The idea of was originally proposed for emission tomography and then transferred to transmission tomography (the SART
and the ML-EM produce the maximum likelihood estimate in the Gaussian and Poisson data, respectively)

• The subset of projections 𝑆(𝑠) is employed for updating of the image, and this update, together with a different subset of
projections 𝑆 𝑠 + 1 , is then used for calculating the next update

• The best ordering of the subsets is defined according to the maximum angular distance (“as orthogonal as possible”) from
the previously used projections

• This ordering further accelerates convergence as compared to sequential or random orderings

• The increased convergence speed (in function of the number of iterations) and the reduced memory requirement
(due to a reduced dimension of the system matrix) comes at the cost of an increased noise of the reconstructed
image

𝑓(𝑠+1) = 𝑓(𝑠) −

σ𝑖∈𝑆(𝑠) 𝑎𝑖𝑗 ∙
𝑓(𝑠) ∙ 𝑎𝑖𝑗
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Hudson, H. M., & Larkin, R. S. (1994). Accelerated image reconstruction using ordered 
subsets of projection data. IEEE transactions on medical imaging, 13(4), 601-609.
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Tomographic image reconstruction

• Because of the intrinsic inconsistencies of the forward-projection model, the optimal solution minimizing the objective
function of the tomographic image reconstruction algorithm is not necessarily the solution that best reconstructs the
ground truth image

• The fundamental approach for the mitigation of the intrinsic inconsistencies of the forward-projection model is to stop
the tomographic image reconstruction algorithm before the solution diverges (albeit with a lower objective function),
thus being referred to as semi-convergence

• Another approach is to use superiorization techniques to shift the solution at each iteration to one that is superior to the
current solution

• A superior solution is defined in terms of a certain merit function𝜑

so that𝑥𝑘+1 = 𝑓 𝑥𝑘 + 𝛽𝑘𝑣
𝑘

𝑥𝑘+1 = 𝑓(𝑥𝑘)algorithm

superiorized algorithm 𝜑(𝑥𝑘+ 𝛽𝑘𝑣
𝑘) ≤ 𝜑(𝑥𝑘)



• In transmission imaging (i.e., ion imaging), the merit function𝜑 is typically the total variation

• For a two-dimensional (2D) image representation in 𝑖 and 𝑗 of the image vector 𝑥𝑘 is defined as:

𝜑 𝑥𝑘 = ෍
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෍
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• 𝛽𝑘𝑣
𝑘 is the perturbation term, with 𝛽𝑘 real non-negative numbers (typically 0 < 𝛽𝑘 < 1) and 𝑣𝑘 the perturbation vector,

typically defined as non-ascending direction of the merit function𝜑 at 𝑥𝑘

𝑣𝑘 = −
∇𝜑 𝑥𝑘

∇𝜑 𝑥𝑘 2
= −

𝑠𝑘

𝑠𝑘

• The perturbation vector is calculated as the negative of the normalized sub-gradient 𝑠𝑘 (generalized concept of

derivative for convex functions which are not necessarily differentiable) of the total variation 𝜑 𝑥𝑘 for the image

vector 𝑥𝑘

Tomographic image reconstruction

Penfold, S. N., Schulte, R. W., Censor, Y., & Rosenfeld, A. B. (2010). Total variation superiorization schemes in 
proton computed tomography image reconstruction. Medical physics, 37(11), 5887-5895.
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Tomographic image reconstruction

• Another approach is to use regularization technique to add a penalty function to the objective function

• The penalty function enforces a desired feature on the reconstructed image

• 𝜙(𝑥) is the penalty function (i.e., total variation or smoothness-related functions) and 𝜆 is a parameter controlling its
weighting

• The regularization changes the problem!

• The optimal value of 𝜆 depends on the level of noise in the data

• 𝜆 too small under-regularizes (i.e., not substantially improve image quality)

• 𝜆 too large over-regularizes, resulting typically in an oversmoothed image

𝑥min = argmin𝑥𝐹 𝑥 +𝜆𝜙(𝑥)

Defrise, M., Vanhove, C., & Liu, X. (2011). An algorithm for total variation
regularization in high-dimensional linear problems. Inverse Problems, 27(6), 065002.



• The superiorization of the algorithm for tomographic image reconstruction introduces a “perturbation” of the solution in
tomographic domain in order to reduce, and not necessarily minimize, a merit function𝜑 (i.e., the total variation)

• The superiorization changes the algorithm by adding a shifting step but not the problem!

Tomographic image reconstruction for 
list-mode detector configuration

Meyer, S., Pinto, M., Parodi, K., & Gianoli, C. (2021). The impact of path estimates in iterative 
ion CT reconstructions for clinical-like cases. Physics in Medicine & Biology, 66(9), 095007.

𝑃𝑄 is the operator that updates 
the OS-SART algorithm



• Due to lateral inhomogeneity traversed by the pencil beam, the Bragg
peak signal results in a linear combination of elementary Bragg peak
signals

• In integration-mode detector configuration, the Bragg peak signal for each pencil is discretized according to the multiple
layers (i.e., channels) or according to the multiple initial energies in a single layer

• The Bragg peak of the component with the larger WET (i.e., the shorter range) takes advantages from the Bragg peaks of
the components with smaller WET

Integration-mode detector configuration 
for pencil beams



• 𝐵𝑃 is the discretized Bragg peak signal

• 𝑊𝐸𝑇 is the unknown vector of WET occurrences

• 𝐿𝑈𝑇 is the look-up-table of individual Bragg peak
signals for each WET component

• The least square optimization is based on Euclidean
distance minimization

• An histogram of WET occurrences for each WET component
is obtained

• Linear decomposition1,2 (inverse problem) is applied to retrieve the WET histogram as WET occurrence for each WET

component by solving the system of linear equations𝐵𝑃 = 𝐿𝑈𝑇 ∗𝑊𝐸𝑇
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1Krah et al. 2015 Phys. Med. Biol.
2Meyer et al. 2017 Phys. Med. Biol. 

Integration-mode detector configuration 
for pencil beams
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• Defining 𝑝𝑖𝑘 the WET components and 𝑤𝑖𝑘 the WET occurrences, the tomographic image reconstruction for integration-
mode detector configuration dealswith the additional channel dimension of the WET histogram (WEThist)

• The typical approach, the WET histogramis reduced to a single WET component

• 𝑊𝐸𝑇𝑖 = max{𝑝𝑖𝑘} the WET component with maximum WET occurrence (𝑊𝐸𝑇𝑚𝑜𝑑𝑒 or𝑊𝐸𝑇𝑚𝑎𝑥)

• 𝑊𝐸𝑇𝑖 = 𝑚𝑒𝑎𝑛(𝑝𝑖𝑘𝑤𝑖𝑘) the weighted averaged WET components (𝑊𝐸𝑇𝑚𝑒𝑎𝑛)

• Therefore, the integration line is assumed as straight or coinciding to the mean ion trajectory of the pencil beam

• Analytical or numerical algorithms for tomographic image reconstruction are applied

Tomographic image reconstruction for 
integration-mode detector configuration

𝑊𝐸𝑇𝑖 = ෍
𝑗
𝑎𝑖𝑗𝑅𝑆𝑃𝑗



• Alternatively,𝑊𝐸𝑇ℎ𝑖𝑠𝑡 is handled within numerical tomographic image reconstruction (ART&SART)

• WET components and WET occurrents are entirely exploited

• The integration line is defined according to the scattering model (conical Gaussian) for each WET component

• The WET components are spatially assigned (the mean ion trajectory is valid only for WETmax and WETmean)

Tomographic image reconstruction for 
integration-mode detector configuration



• The SART algorithm is considered for numerical tomographic image reconstruction

• The SART algorithm is modified to handle the additional channel dimension

𝑓𝑗
𝑛+1 = 𝑓𝑗

𝑛 +

σ𝑖𝑚𝑖𝑗 ∙
𝑔𝑖 − σ𝑗𝑚𝑖𝑗 ∙ 𝑓𝑗

𝑛

σ𝑗𝑚𝑖𝑗

σ𝑖𝑚𝑖𝑗

𝑚𝑖𝑘 =෍

𝑘

𝑤𝑖𝑘𝑎(𝑖𝑘)𝑗

𝑓𝑗
𝑛+1 = 𝑓𝑗

𝑛 +

σ𝑖 𝑎𝑖𝑗 ∙
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where 𝑎(𝑖𝑘)𝑗 describe the conical Gaussian for each channel

(indexing 𝑗 the pixel/voxel, 𝑘 the channel and 𝑖 the measurement)

Tomographic image reconstruction for 
integration-mode detector configuration

Seller Oria et al. 2018 IEEE NSS-MIC



Ground truth SART 𝑊𝐸𝑇𝑚𝑎𝑥SART 𝑊𝐸𝑇ℎ𝑖𝑠𝑡

Tomographic image reconstruction for 
integration-mode detector configuration



• Comparison between list-mode and integration-
mode detector configurations

• The self-consistent tomographic image
reconstruction pretends to know the exact
trajectories of the protons (to overcome the ill-
posed nature of the inverse problem in ion
imaging)

SART 𝑊𝐸𝑇𝑚𝑎𝑥 SART 𝑊𝐸𝑇𝑚𝑒𝑎𝑛

SART list-mode
SART self-consistent 

list-mode

Tomographic image reconstruction for 
integration-mode detector configuration

Gianoli  et al. 2019 Phys. Med.



• The MLP is the estimation of the proton trajectory that can be easily adopted in the system matrix of numerical
reconstruction

• Alternatively, the estimation of the proton trajectory can be used to implement a “modified” FBP, based on a distance-
driven binning of projections for individual source positions

Tomographic image reconstruction 
(list-mode detector configuration)
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Rit, S., Dedes, G., Freud, N., Sarrut, D., & Létang, J. M. (2013). Filtered backprojection
proton CT reconstruction along most likely paths. Medical physics, 40(3), 031103.



• The projection is binned (subdivided) according to the source to detector distance

• The binning provides the sinogram an additional dimension, whose size is defined by the number of bins

Tomographic image reconstruction 
(list-mode detector configuration)
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• The filtering, enabled by the distance-driven binning, is applied to each binned projection of the sinogram (without
filtering the method is simply a back-projection along the MLP)

• The back-projection respects the binning

Tomographic image reconstruction 
(list-mode detector configuration)
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• Analytical calculation of the sinogram or Radon Transform where each projection is calculated as line integrals of the image
intensity

• Choose the image (phantom.png)

• Choose the number of projection lines (nρ = 128) and the number of projection angles (nϑ = 180 with spacing Δϑ = 1
degree)

• For loop over projection angles

• Rotate the image matrix according to the projection angle and integrate the image matrix along the straight
integration lines (instead of rotating the integration lines)

• Store the resulting vector as a column in the sinogram matrix

Exercise #1



• Analytical calculation of the system matrix

• Choose the number of projection lines (nρ = 128) and the number of projection angles (nϑ = 180 with spacing Δϑ = 1
degree)

• For loop over projection angles

• For loop over projections

• Create image matrix made of a column in correspondence of the projection

• Rotate the image matrix according to the projection angle

• Store the resulting vector as a column in the system matrix

• Analytical calculation of the sinogram or Radon Transform as forward-projection of the image to be compared to the
previous sinogram

• Are they different? Why?

Exercise #1



ρ = 1 ρ = 2 ρ = 3 ρ = 4

ϑ = 0 
degree

ϑ = 45 
degrees

Exercise #1



• Implementation of the numerical tomographic image reconstruction algorithm SART

• Take a sinogram and the system matrix

• Initialize the vectorized image as vector of zero

• For loop over iterations

• Updating formula of the SART

Exercise #1

𝑓(𝑛+1) = 𝑓(𝑛) −

σ𝑖 𝑎𝑖𝑗 ∙
𝑓(𝑛) ∙ 𝑎𝑖𝑗

𝑇
− Ԧ𝑔

σ𝑗𝑎𝑖𝑗

σ𝑖 𝑎𝑖𝑗

Forward projection (vector of length I)

Back projection (vector of length J)


