Inverse problems and machine learning in
medical physics

Machine learning for tomographicimage
reconstruction or “deep reconstruction”

Dr. Chiara Gianoli
10/1/2023
chiara.gianoli@physik.uni-muenchen.de



LUDWIG-
MAXIMILIANS-
UNIVERSITAT
MUNCHEN

Tomographicimage reconstruction represents the buildingblock of medical imaging
Tomographicimage reconstruction has been classified as analytical reconstruction or as iterative reconstruction

Very recently, data-driven, deep-learning-based tomographic image reconstruction has been introduced (i.e., deep
tomographicreconstruction)

* Direct reconstruction methods

e Unrolled iterative reconstruction methods

The huge benefit of machine learning in reconstruction is the use of the ground truth (i.e., supervised learning), as
obtained from high quality simulationsor high quality measurements




LUDWIG-
MAXIMILIANS-
UNIVERSITAT

MUONCHEN

* Tomographic image acquisition can be modelled as a Radon transform, or sinogram, of the variable describing the physical
properties of the object of interest

sinogram

* The Radon Transform converts an image from spatial domain to
sinogram domain, by integrating the variables along the integration
lines, as a function of the projectionangles

* The analytical image reconstruction is based on the Fourier slice
theorem that puts in correspondence the Radon Transform with the
Fourier Transform of the image (i.e., the filtered back-projection)

Radon transform Fourier transform
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* Theinverse problem of tomographicimage reconstruction can be solved by means of numerical (iterative) algorithms

* Numerical algorithms can be considered as an iterative solver of a system of linear equations

* [ equations, one for each projection i p = xcos9 + ysind

i

* J unknowns, one for each pixel/voxel j

!7i=z.aijfj
]

a11f1 tafo + - ag5f; = 1

anfi + anfo + ayf = gi

* The coefficients a;; (i.e., the elements of the system matrix) express the intersection area/volume of the pixel/voxel j with
the integrationline of the projection i
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 The iterative reconstruction paradigm is to find the image that minimizes the “discrepancy” between the forward-
projection of the image (i.e., the model of the sinogram) and the acquired sinogram

initialization
image
—>| forward-projection model g gi w
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objective function F(g|g) (-7/ sinogram g /gl- = g; + noise

no ¢

updated image f f = argming F(Aflg)

convergence? reconstructed
: image
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 The machine learning paradigm in tomographic image reconstruction is to find the parameters of the mapping function
thatinfers the ground truth based on supervised prediction

/ sinogram gerqin /

/ sinogram QGiest /

mapping function
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* The back-projection is a linear mapping (i.e., matrix-vector multiplication) that can be described by a fully connected layer
(i.e., linearlayer) of an artificial neural network (ANN)

/ sinogram ¢ /




LUDWIG-
MAXIMILIANS-
UNIVERSITAT
MUONCHEN

* One of the first ML attempt to deep tomographic reconstruction was based on the “pre-calculation” of the filters for the
filtered back-projection, instead of being analytically calculated each time...

* The learnable weights (learning based on a point
source) are applied along the projection lines of
the sinogram

* The back-projection is implemented for each o 0.
- . . O, %'a
projection lines of the sinogram as fully *

connected layer with non-learnable weights
(rotational and shift-invariant approximation) C - z

i

° In praCtice, th|S iS SUitabIe Only for tWO‘dimenSionaI images Floyd, C. E. (1991). An artificial neural network for SPECT image

reconstruction. IEEE transactions on medical imaging, 10(3), 485-487.
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* Define the image of an ideal point source (i.e., target data of the network)

* Simulate the sinogram of the ideal point source, then add noise and blur along each projection line (i.e., input data of the
network)

* Implement a first fully connected network, connecting the nodes of the input layer (i.e., the projection line) to all the
nodes of the hidden layer (i.e., the filtered projectionline)

* The forward-pass function is a weighed average of the inputs with unknown weights (i.e., no bias, no activation
function)

* Implement a second fully connected network, connecting the nodes of the hidden layer (i.e., the filtered projection line) to
all the nodes of the output layer (i.e., the image)

* The forward-pass function is a weighed average of the inputs with known weights from the system matrix

* Train the network based on input and target data (implement the backward-pass based on the gradient descend
algorithms)
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* The purpose of domain transform is to map the sinogram (i.e., the projections) to the image

* The measured sinogram encodes an intermediate representation of the object of interest in the projection domain
(i.e., the Radon transform), similar to an encoding function

* The measured sinogram is subsequently reconstructed into an image by an inversion of the encoding function, similar
to a decoding function

Radon transform of the object of interest

“reconstructed”
object of interest

object of
interest

Decoder (image
reconstruction)
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* In direct reconstruction methods, the domain transformation can be explicitly learnt from the network or explicitly given
asinputto the network

* Direct reconstruction methods can entail the encoding of the Radon transform into a lower dimensional space (i.e.,
compressed sensing) and the decoding of the encoded Radon transform, typically by means of convolutional layers

 The compressed sensing hypothesis is that a signal can be represented by and perfectly recovered from few non-
zero coefficientsin a suitable basis (i.e., dictionary)

* Wavelet and Shearlet are common basis functions (https.//www.math.uh.edu/~dlabate/SHBookIntro.pdf)
* Transformationinto a lower dimensional space can be based on manifolds (i.e., manifold-based compressed sensing)

* The manifold hypothesis is that high dimensional data (i.e., a continuous images) lie on low-dimensional
manifolds (i.e., a point)in a high-dimensional space (i.e., an infinite dimensional vectoral space)

* Zero-dimensional manifolds are points, one-dimensional manifolds are lines, two-dimensional manifolds are
surfaces...
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e The AUtomated TransfOrm by Manifold Approximation (AUTOMAP) is a deep neural network with feed-forward
architecture, composed of multiple fully-connected layers followed by a sparse convolutional auto-encoder (i.e., encoder-

decoder where the input and the output domains are the same)

* The network simultaneously learns an optimal convolutional domain (i.e., manifold space) and a sparse representations
(i.e., compressed sensing) through a joint optimization (i.e., manifold encoding—decoding process)

Different from compressed sensing, the
convolutional layers do not make hypothesis on
the sparsifying transform (e.g., wavelet,
shearlet...)

AUTOMAP is originally demonstrated for MRI
but it is generally applicable to different image
reconstruction problems

Zhu, B,, Liu, J. Z., Cauley,S. F., Rosen, B. R., & Rosen, M. S. (2018). Image
reconstruction by domain-transformmanifold learning. Nature, 555(7697),487-492.
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(iCT-Net)

* The intelligent CT network (iCT-Net) is a deep neural network based on multi-channel convolutional layers intended for
image reconstruction of truncated data (i.e., the limited and sparse angle problem, the exterior problem and the interior

problem)

* The design of the iCT-Net is inspired by the filtered back-projection pipeline which consists of three major cascaded
steps

interior
problem

exterior
problem

Pre-processing of projection
data (i.e., noise and beam
hardening correction)

Back-projection for domain
transform

A 4

\ 4

Projection data filtering

Li, V., Li, K., Zhang, C., Montoya, J., & Chen, G. H. (2019). Learningto reconstructcomputed tomography images directly from
sinogramdata under a variety of data acquisition conditions. IEEE transactions on medical imaging, 38(10),2469-2481.
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(iCT-Net)

* Five convolutional layers (L1-L5 in figure) to suppress noise and convert a sparse-view sinogram into a dense-view
sinogram (i.e., manifold learning or pre-processing step)

* Four convolutional layers (L6-L9 in figure) to extract features (i.e., filtering)

* A fully connected layer (L10 in figure) to perform the domain transform from the extracted feature space to image space

(i.e., back-projection step)

 Two convolutional layers (L11-L12 in
figure) to learn a combination of the
image from each view (i.e.,
summation step but with learnable
summation weights)

* The rotational symmetry of the
back-projection is  explicitly
implemented to reduce the
dimensionality of the network
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Li, Y., Li, K., Zhang, C., Montoya, J., & Chen, G. H. (2019). Learningto reconstructcomputed tomography images directly from
sinogramdata under a variety of data acquisition conditions. IEEE transactions on medical imaging, 38(10),2469-2481.
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* In the hierarchical deep learning, the image reconstruction is fully learnt by interpreting the domain transform as a
continuum of intermediate representationsbetween the input and output data

e A partial line integral is proposed as an intermediate representation between line integral and voxel according to a
hierarchical framework

* The reconstructed image is made by voxels, which are essentially line integrals over the “length” of the voxel

e 2

pi-l pl pwl.\

00

Line integrals Partial line integrals Image voxels
p(r.0) a(r,6,t) f(r,0)

Fu, L, & De Man, B. (2019, May). A hierarchical approach to deep learningandits application to tomographicreconstruction. In 15th International
Meeting on Fully Three-Dimensional Image Reconstruction in Radiology and Nuclear Medicine (Vol. 11072, p. 1107202).SPIE.
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lerarc deep learning

 The estimation of the partial line integrals only requires the line integrals that are at nearby angular positions and at
nearby radial positions

e Similarly, the estimation of the voxel values requires as inputs only the partial line integrals that are at nearby radial and
depth positions

* Sparse connectionslayers

& B
B £ » Z g
DL
Fu, L, & De Man, B. (2019, May). A hierarchical approach to deep learningandits application to tomographicreconstruction. In 15th International
Meeting on Fully Three-Dimensional Image Reconstruction in Radiology and Nuclear Medicine (Vol. 11072, p. 1107202).SPIE.
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(Deep PET)

e The Deep PET is a convolutional encoder—decoder network without fully connected layers

* Shift-invariant mapping of the convolution to encode sinogram data into feature maps (convolutional encoding)

DATA GENERATION

* Spatial down-sampling to P e e e e e e e
. . - Noisy realizanon of tota),
introduce  space  variance s ors s
(needed for domain transform)

and aftenuabon data

e Convolutional decoding with
spatial up-sampling : Ground truth kmages

20 images (n=98.000) (n=294.000, laler ciscard 2,990)
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 The DirectPET is a large-scale direct neural network that performs image reconstruction by introducing a Radon inversion

layer

* Anencoding segment compressing the sinogram datainto a lower dimensional space

* A domain transformation segment
(i.,e., Radon inversion) using
sinogram data masking along with
fully connected layers

* A refinement and scaling segment
enhancing and up-sampling the
reconstructed image

Whiteley, W., Luk, W. K., & Gregor, J. (2020). DirectPET:
full-size neural network PET reconstruction from sinogram
data.Journal of Medical Imaging, 7(3), 032503.
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With the Deep Back-Projection (DBP) the geometrical relationship between the projection domain and the image domain
is encoded in single-view back-projectionsthat are stacked and then fed as inputinto the convolutional neural network

Typically, image reconstruction needs non-linear and shift-variant mapping, as introduced by fully connected layers,
down-sampling (encoding) and then up-sampling (decoding)

In this case, the spatialinvariance of the purely convolutional neural networkis retained

15 layers

Conv + RelLU

sinogram

Conv + BN + ReLU
Conv + BN + ReLU

reconstruction
single-view back

projections 3x3x16x64 Ix3Ixn64xE4 Ax3xnbBdx

Ye, D. H., Buzzard, G. T., Ruby, M., & Bouman, C. A. (2018, November). Deep back projection for sparse-view CT reconstruction.
In 2018 IEEE Global Conference on Signal and Information Processing (GlobalSIP) (pp. 1-5). |EEE.




LUDWIG-
MAXIMILIANS-|
UNIVERSITAT
MUONCHEN

* Interpretability and generalizability in medical applications play fundamental roles but deep neural networks are usually
difficult to interpret because of the huge number of parameters

* Algorithm unrolling or unfolding is proposed to improve the interpretability and the generalizability (i.e., overfitting)
of the deep neural network

* Explicitly connected to the iterative algorithms used in imaging (and signal processing)
* Explicitlybased on domain knowledge as in imaging (and signal processing)

* If the normal operator of the forward-projection model is a convolution (i.e., denoising and deblurring in the back-
projection model), convolutional neural networks take part of unrolled iterative reconstruction methods

Q

aiq a1y
| |

(U1 U771
* Denoisingand deblurring can be described by convolutional layers
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* “Unfolded” iterative reconstruction
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* Eachiterationof the algorithm s represented as one layer of the network
* Concatenatingthese layers forms a deep neural network

 The number of layersin a deep network is typically much smaller than the number of iterations required in an iterative
algorithm

 The network can be trained through all layers or layer per layer

e Unrolled iterative reconstruction methods are typically image domain networks intended to reduce the image noise due to
low count statistics PET sinograms based on prior information from high qualityimaging

 The network is trained using patient-specific prior information (i.e., MRI image) and the measured data (i.e., PET
sinogram)
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* Modified fully convolutional network (U-net) MRI |__high quality PET
16 16 16 16
Input é é Output
- - Iterative PET Unrolled PET
3 2 22
300 3
g &b 8
& e -
oy § 64 64 o [ ]
g Uj' ®*§jg§ ms)p Comv+BN+LRelLU X = .
2 © 1284 2 w=p Conv_Stride2+BN+LRelU i R ] - ;
‘; =) Biinear Upsampling Gong, K., Catana,C., Qi, J., & Li, Q. (2018). PET image reconstruction using deep
-:’ - :' o (B image prior.IEEE transactions on medical imaging, 38(7), 1655-1665.
1

* Residual network based on convolutional layers

l MRI iterative PET unrolled PET

EM update

EM update

£

Residual Learning Unit

Mehranian, A., & Reader, A. J. (2020). Model-based deep learning PET image reconstruction using forward—backward
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Inspired by the ML literature about tomographicimage reconstruction but extended toward hybrid X-ray and ion imaging

* With the “deep back-projection”, the geometrical relationship between the projection domain and the image domain
is encoded in single-view back-projectionsthat are stacked and fed as input to the convolutional neural network

The network is designed as a two input branches (one for the X-ray CT image and the other for the ion radiographies)
followed by an integration branch

 Two ion radiographies (two projection angles) are clustered according to the scattering angles of the ion trajectories
(ten clusters for each projection angles)

10 layers

Inaccurately callbrated X-ray CT

Conw.

10 layers

Conv. + BN + RelLu
Conv. + BN + RelLu
Conv. + BN + Relu

Accurately calibrated X-ray CT

3x3x3x1x64 3x3x3x64x64 3x3x3x64x1

Back-projected ion trajectories
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Conv. + BN + Relu '
Conv. + BN + RelLu .

Conv. + BN + RelLu

Gianoli et al. 2022 IEEE NSS-MIC
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