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• Tomographic image reconstruction represents the building block of medical imaging

• Tomographic image reconstruction has been classified as analytical reconstruction or as iterative reconstruction

• Very recently, data-driven, deep-learning-based tomographic image reconstruction has been introduced (i.e., deep
tomographic reconstruction)

• Direct reconstruction methods

• Unrolled iterative reconstruction methods

• The huge benefit of machine learning in reconstruction is the use of the ground truth (i.e., supervised learning), as
obtained from high quality simulationsor high quality measurements

Tomographic image reconstruction 



Analytical reconstruction

• Tomographic image acquisition can be modelled as a Radon transform, or sinogram, of the variable describing the physical
properties of the object of interest
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sinogram• The Radon Transform converts an image from spatial domain to
sinogram domain, by integrating the variables along the integration
lines, as a function of the projection angles

• The analytical image reconstruction is based on the Fourier slice
theorem that puts in correspondence the Radon Transform with the
Fourier Transform of the image (i.e., the filtered back-projection)
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• The inverse problem of tomographic image reconstruction can be solved by means of numerical (iterative) algorithms

• Numerical algorithms can be considered as an iterative solver of a system of linear equations

• The coefficients 𝑎𝑖𝑗 (i.e., the elements of the system matrix) express the intersection area/volume of the pixel/voxel 𝑗 with

the integration line of the projection 𝑖

• 𝐼 equations, one for each projection 𝑖

• 𝐽 unknowns, one for each pixel/voxel 𝑗

Iterative reconstruction
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• The iterative reconstruction paradigm is to find the image that minimizes the “discrepancy” between the forward-
projection of the image (i.e., the model of the sinogram) and the acquired sinogram

Iterative reconstruction
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Deep tomographic reconstruction

• The machine learning paradigm in tomographic image reconstruction is to find the parameters of the mapping function
that infers the ground truth based on supervised prediction

መ𝜃 = arg𝑚𝑖𝑛𝜃 𝐿(𝐷𝑁𝑁(𝑔𝑡𝑟𝑎𝑖𝑛|𝜃)|𝑡)

sinogram 𝑔𝑡𝑟𝑎𝑖𝑛

loss function 𝐿(𝜃)

mapping function
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• The back-projection is a linear mapping (i.e., matrix-vector multiplication) that can be described by a fully connected layer
(i.e., linear layer) of an artificial neural network (ANN)
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Deep tomographic reconstruction



• One of the first ML attempt to deep tomographic reconstruction was based on the “pre-calculation” of the filters for the
filtered back-projection, instead of being analytically calculated each time…

• In practice, this is suitable only for two-dimensional images Floyd, C. E. (1991). An artificial neural network for SPECT image 
reconstruction. IEEE transactions on medical imaging, 10(3), 485-487.

Deep tomographic reconstruction

𝑔𝑖
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• The learnable weights (learning based on a point
source) are applied along the projection lines of
the sinogram

• The back-projection is implemented for each
projection lines of the sinogram as fully
connected layer with non-learnable weights
(rotational and shift-invariant approximation)



• Define the image of an ideal point source (i.e., target data of the network)

• Simulate the sinogram of the ideal point source, then add noise and blur along each projection line (i.e., input data of the
network)

• Implement a first fully connected network, connecting the nodes of the input layer (i.e., the projection line) to all the
nodes of the hidden layer (i.e., the filtered projection line)

• The forward-pass function is a weighed average of the inputs with unknown weights (i.e., no bias, no activation
function)

• Implement a second fully connected network, connecting the nodes of the hidden layer (i.e., the filtered projection line) to
all the nodes of the output layer (i.e., the image)

• The forward-pass function is a weighed average of the inputs with known weights from the system matrix

• Train the network based on input and target data (implement the backward-pass based on the gradient descend
algorithms)

Exercise #2



Direct reconstruction methods

• The purpose of domain transform is to map the sinogram (i.e., the projections) to the image

• The measured sinogram encodes an intermediate representation of the object of interest in the projection domain
(i.e., the Radon transform), similar to an encoding function

• The measured sinogram is subsequently reconstructed into an image by an inversion of the encoding function, similar
to a decoding function

… …

Radon transform of the object of interest

object of 
interest

“reconstructed” 
object of interest

Encoder (image 
acquisition)

Decoder (image 
reconstruction)



• In direct reconstruction methods, the domain transformation can be explicitly learnt from the network or explicitly given
as input to the network

• Direct reconstruction methods can entail the encoding of the Radon transform into a lower dimensional space (i.e.,
compressed sensing) and the decoding of the encoded Radon transform, typically by means of convolutional layers

• The compressed sensing hypothesis is that a signal can be represented by and perfectly recovered from few non-
zero coefficients in a suitable basis (i.e., dictionary)

• Wavelet and Shearlet are common basis functions (https://www.math.uh.edu/~dlabate/SHBookIntro.pdf)

• Transformation into a lower dimensional space can be based on manifolds (i.e., manifold-based compressed sensing)

• The manifold hypothesis is that high dimensional data (i.e., a continuous images) lie on low-dimensional
manifolds (i.e., a point) in a high-dimensional space (i.e., an infinite dimensional vectoral space)

• Zero-dimensional manifolds are points, one-dimensional manifolds are lines, two-dimensional manifolds are
surfaces…

Direct reconstruction methods



• The AUtomated TransfOrm by Manifold Approximation (AUTOMAP) is a deep neural network with feed-forward
architecture, composed of multiple fully-connected layers followed by a sparse convolutional auto-encoder (i.e., encoder-
decoder where the input and the output domains are the same)

• The network simultaneously learns an optimal convolutional domain (i.e., manifold space) and a sparse representations
(i.e., compressed sensing) through a joint optimization (i.e., manifold encoding–decoding process)

Zhu, B., Liu, J. Z., Cauley, S. F., Rosen, B. R., & Rosen, M. S. (2018). Image 
reconstruction by domain-transform manifold learning. Nature, 555(7697), 487-492.

• Different from compressed sensing, the
convolutional layers do not make hypothesis on
the sparsifying transform (e.g., wavelet,
shearlet…)

• AUTOMAP is originally demonstrated for MRI
but it is generally applicable to different image
reconstruction problems

Direct reconstruction methods
(AUTOMAP)



• The intelligent CT network (iCT-Net) is a deep neural network based on multi-channel convolutional layers intended for
image reconstruction of truncated data (i.e., the limited and sparse angle problem, the exterior problem and the interior
problem)

• The design of the iCT-Net is inspired by the filtered back-projection pipeline which consists of three major cascaded
steps

Direct reconstruction methods
(iCT-Net)

Pre-processing of projection 
data (i.e., noise and beam 

hardening correction)
Projection data filtering

Back-projection for domain 
transform

Li, Y., Li, K., Zhang, C., Montoya, J., & Chen, G. H. (2019). Learning to reconstruct computed tomography images directly fro m 
sinogram data under a variety of data acquisition conditions. IEEE transactions on medical imaging, 38(10), 2469-2481.

interior 
problem

exterior 
problem



• Five convolutional layers (L1-L5 in figure) to suppress noise and convert a sparse-view sinogram into a dense-view
sinogram (i.e., manifold learning or pre-processing step)

• Four convolutional layers (L6-L9 in figure) to extract features (i.e., filtering)

• A fully connected layer (L10 in figure) to perform the domain transform from the extracted feature space to image space
(i.e., back-projection step)

Li, Y., Li, K., Zhang, C., Montoya, J., & Chen, G. H. (2019). Learning to reconstruct computed tomography images directly fro m 
sinogram data under a variety of data acquisition conditions. IEEE transactions on medical imaging, 38(10), 2469-2481.

Direct reconstruction methods
(iCT-Net)

• Two convolutional layers (L11-L12 in
figure) to learn a combination of the
image from each view (i.e.,
summation step but with learnable
summation weights)

• The rotational symmetry of the
back-projection is explicitly
implemented to reduce the
dimensionality of the network



• In the hierarchical deep learning, the image reconstruction is fully learnt by interpreting the domain transform as a
continuum of intermediate representations between the input and output data

• A partial line integral is proposed as an intermediate representation between line integral and voxel according to a
hierarchical framework

• The reconstructed image is made by voxels, which are essentially line integrals over the “length” of the voxel

Fu, L., & De Man, B. (2019, May). A hierarchical approach to deep learning and its application to tomographic reconstruction. In 15th International 
Meeting on Fully Three-Dimensional Image Reconstruction in Radiology and Nuclear Medicine (Vol. 11072, p. 1107202). SPIE.

Direct reconstruction methods
(hierarchical deep learning)



• The estimation of the partial line integrals only requires the line integrals that are at nearby angular positions and at
nearby radial positions

• Similarly, the estimation of the voxel values requires as inputs only the partial line integrals that are at nearby radial and
depth positions

• Sparse connections layers 

Direct reconstruction methods
(hierarchical deep learning)

Fu, L., & De Man, B. (2019, May). A hierarchical approach to deep learning and its application to tomographic reconstruction. In 15th International 
Meeting on Fully Three-Dimensional Image Reconstruction in Radiology and Nuclear Medicine (Vol. 11072, p. 1107202). SPIE.



• The Deep PET is a convolutional encoder–decodernetwork without fully connected layers

• Shift-invariant mapping of the convolution to encode sinogram data into feature maps (convolutional encoding)

Häggström, I., Schmidtlein, C. R., Campanella, G., & Fuchs, 
T. J. (2019). DeepPET: A deep encoder–decoder network 
for directly solving the PET image reconstruction inverse 

problem. Medical image analysis, 54, 253-262.

Direct reconstruction methods
(Deep PET)

• Spatial down-sampling to
introduce space variance
(needed for domain transform)

• Convolutional decoding with
spatial up-sampling



• A domain transformation segment
(i.e., Radon inversion) using
sinogram data masking along with
fully connected layers

• A refinement and scaling segment
enhancing and up-sampling the
reconstructed image

• The DirectPET is a large-scale direct neural network that performs image reconstruction by introducing a Radon inversion
layer

• An encoding segment compressing the sinogram data into a lower dimensional space

Whiteley, W., Luk, W. K., & Gregor, J. (2020). DirectPET: 
full-size neural network PET reconstruction from sinogram 

data. Journal of Medical Imaging, 7(3), 032503.

Direct reconstruction methods 
(DirectPET) 



• With the Deep Back-Projection (DBP) the geometrical relationship between the projection domain and the image domain
is encoded in single-view back-projections that are stacked and then fed as input into the convolutional neural network

• Typically, image reconstruction needs non-linear and shift-variant mapping, as introduced by fully connected layers,
down-sampling (encoding) and then up-sampling (decoding)

• In this case, the spatial invariance of the purely convolutional neural network is retained

Ye, D. H., Buzzard, G. T., Ruby, M., & Bouman, C. A. (2018, November). Deep back projection for sparse-view CT reconstruction. 
In 2018 IEEE Global Conference on Signal and Information Processing (GlobalSIP) (pp. 1-5). IEEE.

Direct reconstruction methods
(DBP)



Unrolled iterative reconstruction 
methods 

• Interpretability and generalizability in medical applications play fundamental roles but deep neural networks are usually
difficult to interpret because of the huge number of parameters

• Algorithm unrolling or unfolding is proposed to improve the interpretability and the generalizability (i.e., overfitting)
of the deep neural network

• Explicitly connected to the iterative algorithms used in imaging (and signal processing)

• Explicitly based on domain knowledge as in imaging (and signal processing)

• If the normal operator of the forward-projection model is a convolution (i.e., denoising and deblurring in the back-
projection model), convolutional neural networks take part of unrolled iterative reconstruction methods

• Denoising and deblurring can be described by convolutional layers
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unrolled update

• “Unfolded” iterative reconstruction

• Unrolled iterative reconstruction

Unrolled iterative reconstruction 
methods 
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• Each iteration of the algorithm is represented as one layer of the network

• Concatenating these layers forms a deep neural network

• The number of layers in a deep network is typically much smaller than the number of iterations required in an iterative
algorithm

• The network can be trained through all layers or layer per layer

• Unrolled iterative reconstruction methods are typically image domain networks intended to reduce the image noise due to
low count statistics PET sinograms based on prior information from high quality imaging

• The network is trained using patient-specific prior information (i.e., MRI image) and the measured data (i.e., PET
sinogram)

Unrolled iterative reconstruction 
methods 



• Modified fully convolutional network (U-net)

• Residual network based on convolutional layers

Gong, K., Catana, C., Qi, J., & Li, Q. (2018). PET image reconstruction using deep 
image prior. IEEE transactions on medical imaging, 38(7), 1655-1665.

Unrolled iterative reconstruction 
methods 

Mehranian, A., & Reader, A. J. (2020). Model-based deep learning PET image reconstruction using forward–backward 
splitting expectation–maximization. IEEE transactions on radiation and plasma medical sciences, 5(1), 54-64.

MRI high quality PET

Iterative PET Unrolled PET

MRI iterative PET unrolled PET



• Inspired by the ML literature about tomographic image reconstruction but extended toward hybrid X-ray and ion imaging

• With the “deep back-projection”, the geometrical relationship between the projection domain and the image domain
is encoded in single-view back-projections that are stacked and fed as input to the convolutional neural network

• The network is designed as a two input branches (one for the X-ray CT image and the other for the ion radiographies)
followed by an integration branch

• Two ion radiographies (two projection angles) are clustered according to the scattering angles of the ion trajectories
(ten clusters for each projection angles)

Deep reconstruction in ion imaging

Gianoli et al. 2022 IEEE NSS-MIC
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