PHYSICS REPORTS (Review Section of Physics Letters) 121, No. 5 (1985) 263-315. North-Holland, Amsterdam

COSMIC STRINGS AND DOMAIN WALLS

Contents:

1. Introduction
1. Overview
2. Standard cosmological model
3. Cosmological phase transitions
2. Topological defects
4. Domain walls
. Strings
. More complicated strings
. Global strings
. Monopoles
9. Monopoles connected by strings
10. Walls bounded by strings
3. Physical processes with strings and walls
11. Dynamics of strings
12. Oscillating loops
13. Intercommuting
14. Gravitational radiation from loops
15. Electromagnetic radiation

00 ~3 O

Abstract:

Alexander VILENKIN
Physics Deparmment, Tufts University, Medford, MA 02155, U.S.A.

Received October 1984

265
265
266
268
271
271
272
273
274
275
276
277
278
278
281
283
284
286

16. Strings in expanding universe

17. Dynamics of global strings

18. Dynamics of domain walls

19. Gravitational field of strings and walls
20. Interaction with particles

4. Evolution of topological defects

21. Domain walls

22. Strings

23. Walls bounded by strings

24. Monopoles connected by strings

5. Cosmological effects of strings

25. Galaxy formation: Basic facts
26. Strings and galaxy formation
27. Observational effects of strings
28. String-dominated universe

References
Note added in proof

287
289
290
201
203
294
204
296
300
302
304
304
306
310
312
313
314

Phase transitions in the early universe can give rise to macroscopic topological defects: vacuum domain walls, strings, walls bounded by strings,
and monopoles connected by strings. This article reviews the formation, physical properties and the cosmological evolution of various defects. A
particular attention is paid to strings and their cosmological consequences, including the string scenario of galaxy formation and possible

observational effects of strings.

Single orders for this issue

accompanied by check.

Single issue price Dfl. 34.00, postage included.

PHYSICS REPORTS (Review Section of Physics Letters) 121, No. 5 (1985) 263-315.

Copies of this issue may be obtained at the price given below. All orders should be sent directly to the Publisher. Orders must be

0 370-1573/85/$18.55 © Elsevier Science Publishers B.V. (North-Holland Physics Publishing Division)



COSMIC STRINGS AND DOMAIN WALLS

Alexander VILENKIN

Physics Department, Tufts University, Medford, MA 02155, U.S.A.

NORTH-HOLLAND-AMSTERDAM



A. Vilenkin, Cosmic strings and domain walls 265
1. Introduction
1. Overview

Recent developments in cosmology and particle physics were marked by a close interaction between
the two fields. The connecting link was provided by Kirzhnits [1] who suggested that spontaneously
broken symmetries can be restored at sufficiently high temperatures. According to modern ideas, the
elementary particle interactions are described by a grand unified theory (GUT) with a simple gauge
group G which is a valid symmetry at the highest energies. As the energy is lowered, the model
undergoes a series of spontaneous symmetry breakings:

G->H-'---»SUQB)xSU2)x U(1)-»SUB) X UDem -

In the context of hot big bang cosmology this implies a sequence of phase transitions in the early
universe, with critical temperatures related to the corresponding symmetry breaking scales [2].

Phase transitions in the early universe can give rise to topologically stable defects ~ vacuum domain
walls, strings and monopoles [3]. Hybrid topological animals-walls bounded by strings [4-6] and
monopoles connected by strings [7, 8] — can also be formed. The first classification of topological defects
and a discussion of their evolution were given by Kibble in 1976 [3]. Since that time, a great deal has
been learned about the evolution and cosmological consequences of various defects. The main
conclusions can be summarized as follows. Topologically stable domain walls and monopoles are
disastrous for cosmological models and should be avoided [9, 10]. The hybrid structures are harmless:
they rapidly break into pieces and decay practically without trace. Strings, on the other hand, cause no
harm, but can lead to very interesting cosmological consequences. In particular, they can generate
density fluctuations sufficient to explain the galaxy formation [11-13] and can produce a number of
distinctive and unique observational effects. For strings of grand unification scale (~10'° GeV) some of
these effects will soon be within the reach of experimental capabilities.

This paper reviews the formation, evolution and cosmological consequences of macroscopic topolo-
gical defects. (That is, of all defects excluding monopoles. We will be interested in monopoles only in
the context of monopoles connected by strings.) The reader will notice that, compared to other defects,
strings occupy a prominent position in this review. The reason is that, of all the defects, they are the
most interesting and much better studied. The paper is organized as follows. The remainder of chapter 1
gives some basic facts concerning the hot cosmological model and the physics of phase transitions in the
early universe. Various types of defects and the conditions for their existence are discussed in chapter 2.
Chapter 3 deals with the dynamics of strings and walls, their gravitational fields and their interaction
with particles. The formation and cosmological evolution of topological defects are reviewed in chapter
4. Finally, chapter 5 discusses the cosmological implications of strings: their possible role in galaxy
formation, observational effects of strings, and the possibility that we live in a string-dominated
universe. Most of the material in this review has been published elsewhere, but some of the results are
new.

Throughout the paper I use the notations m, =2.2x 107 g =1.2x 10" GeV and #,= 5.3 x 10™*s for
the Planck mass and time, respectively, and the system of units in which # = ¢ =1. In these units
t,=m,' and the gravitational constant is G = m,>.
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2. Standard cosmological model

In the standard hot cosmological model it is assumed that the universe begins in the state of local
thermal equilibrium® at a very high temperature and then cools in the course of the cosmological
expansion. The universe is assumed to be homogeneous and isotropic; besides, at early times the
universe is very nearly flat, and thus it is accurately described by the spatially flat Robertson-Walker
metric

ds? = d - a®(t) (dx*+ dy*+ dz?). .1

The expansion of the universe is governed by the evolution equation

(d/a)* =57Gp _ 22

where p is the energy density. The energy conservation law can be written as

d 3 d

— =—P—(ad°® , 2.3

L (pa)=-P (@) @3
where P is the pressure. In a radiation-dominated universe,

71_2
=—N(T)T* 2.4
p=5 N 24

where N(T)= No(T)+iN(T), Nuo(T) and N(T) are, respectively, the numbers of distinct helicity
states for bosons and fermions whose masses are small compared to T.
As long as the expansion of the universe is adiabatic, the entropy is conserved, and we can write

d
a—t (sa3) =0 (25)
where
2 2
5= —;—;-N(T) T 2.6)

is the entropy density. If T is not near any mass threshold, N(T')= const. and aT = const. Then egs.
(2.2) and (2.3) give

a(t) 12, 2.7

' The word “local” is important here. A system in complete equilibrium necessarily has thermal energy density fluctuations which are much
greatér than one can afford in the early universe (large-scale density fluctuations grow by gravitational instability). It is assumed, therefore, that at
time 7 the equilibrium is established only on scales smaller than the horizon, £ < and that the universe is much smoother than the thermal state on
scales €> 1.
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p =3/(327Gr), (2.8)
T = (45/167°NG)V*t2 = 0.55(NG) ™4+ V2 . 2.9)

The equation of state of the universe in the radiation-dominated era is P = p/3.
When the universe becomes matter-dominated, P ~ 0 and we have

ad;(pf) =0, (2.10)
a(t) < £#°, @2.11)
p=(67G)". (2.12)

The transition between the two regimes occurs at the time of equal matter and radiation densities,
t ~ t.,. We shall estimate f., later in this section. ‘

Two important parameters characterizing the present universe are the Hubble *“constant”, H = d/a,
and the density, p. It is customary to use dimensionless parameters, 4 and 2:

h = HJ100 km s Mpc™, | 2.13)
2= plp., 2.14)

where p.=2x107® h>gem™ is the critical density. Closed, open and flat universes correspond to
>1, 2<1 and 2 = 1, respectively. The inflationary cosmological model [23] predicts that £ = 1 with
very high accuracy. Then eq. (2.11) applies at all 1> 1., and the present age of the universe can be
found as

tores =3H'=2Xx10" h7's. (2.15)
The actual values of & and 2 are known only approximately:

0.5sh=1, (2.16)
01s0=1. (2.17)

Nucleosynthesis considerations require that the density of baryons, pp, cannot exceed 0.1p,,
2s=<0.1, (2.18)
and thus, if {2 is close to 1, the universe must be dominated by particles other than baryons.
In discussing the recent evolution of the universe, it is convenient to use the redshift parameter, z,
defined as

1+ z=a(tyes)la(t). (2.19)

For 2=1, (1+2)x 23
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The present temperature of the photon gas is T=2.7°K and the corresponding energy density is
p, =4.5%x107* gcm™>. The total density of “radiation”, including photons and N, species of massless
neutrons is

p.=(1+023N,)p,. (2.20)

At t >t the ratio p,/p decreases like (1 + z), and thus the time of equal matter and radiation densities,
Ioq, corresponds to the redshift (for N, = 3)

14 Zeg= 2X 10* 2 h?. @21)

The density of the universe at t., is peq = 3.2 % 107'¢ (22 h?)* g cm™>. The time ., can be approximately
found from p., = 3/327GtZ,. This gives

fog ~ 4% 10°(2 h2) 5. 2.22)

An important event in the history of the universe is the decoupling of matter and radiation, when
protons and electrons combine to form hydrogen atoms. This happens at

Zao=1300,  fge=~5x 101 (2h2) 25, 2.23)

This concludes my brief review of the standard cosmological model. For a detailed discussion, the
reader is referred to the standard texts [23, 24].

It has been emphasized by a number of people that the initial conditions assumed in the standard
cosmological model are rather unnatural (see, e.g., refs. [23, 3]). The required homogeneity could not be
established by causal processes, the approximate flatness of the present universe requires a severe
fine-tuning of the balance between kinetic and potential energies at early times, and the interaction
rates at energies >10"" GeV are insufficient to establish thermal equilibrium. An attractive solution to
most of these problems (and also to the problem of overabundance of superheavy monopoles [10]) is
given by the inflationary universe scenario [23] proposed by Guth. During the inflationary phase the
universe is dominated by the false vacuum energy density, p, = const., and eq. (2.2) gives a(f) «
exp(Ht), where H = (87Gp,/3)"2. As a result of this exponential expansion, regions initially within the
causal horizon are blown up to sizes much greater than the present Hubble radius. The vacuum energy
eventually thermalizes, and the following evolution is the same as in the standard model. Any
topological defects produced before inflation are inflated away, and one should be interested only in the
defects produced after or near the end of inflation. In the following sections we shall assume, unless
otherwise indicated, that the phase transitions of interest are not of inflationary type.

3. Cosmological phase transitions

Consider a field theory with a symmetry group G and a Higgs field ¢ with a potential of
self-interaction V(¢). For illustrative purposes, it will be sufficient to take G = U(1) and

V(#)=3A(¢"¢ — 7%, (.1)
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where ¢ is a complex scalar field and A >0. The U(1) symmetry is the symmetry of phase trans-
formations, ¢ — ¢'“¢. The minima of the potential are at nonzero values of ¢, and so the symmetry is
spontaneously broken and ¢ acquires a vacuum expectation value (VEV),

(p)=n¢e°. (3.2)

The magnitude of (¢) is fixed by the model, but the phase @ is arbitrary. We thus have a manifold, M,
of degenerate vacuum states corresponding to different choices of 6. In our example, M is a circle in the
complex ¢ plane (|¢| = 7).

At finite temperatures the effective potential for ¢ acquires additional, temperature-dependent
terms. In the high-temperature limit,

Vr(@)=AT>¢" ¢+ V(¢), (3.3)

where the dimensionless constant A is a combination of the self-coupling A and other couplings of the
field ¢ (e.g. Yukawa couplings and gauge coupling) [2]. Here we shall assume that A >0. (The case
A <0 is discussed at the end of section 9.) From eqgs. (3.1) and (3.3) we see that the effective mass of the
field ¢ at temperature T is

m¥(T)= AT?- An?. (.4)
m?*(T) is equal to zero at T = T, where
T.= (WA 7. : (3.5)

Unless A is very small, we have T, ~ 7. For T > T,, m*(T) is positive, the minimum of V(¢)is at ¢ =0,
and so the expectation value of ¢ vanishes and the symmetry is restored. T is the critical temperature
of the phase transition from the symmetric to the broken-symmetry phase. In our example the transition
is second-order (the symmetric state (¢) becomes unstable at T < T.). More complicated models can
lead to first-order phase transitions, where the symmetric phase remains metastable at T < T, and the
transition occurs through bubble nucleation.

The general case of symmetry breaking, G~ H, can be analyzed in a similar manner [2, 3]. In the
symbolic relation G- H, G is the original group and H is its unbroken subgroup. H includes all
elements of G which leave the VEV (¢) invariant. The manifold of the equivalent vacuum states, M,
can then be identified with the quotient space, G/H.

In the cosmological context, as the universe cools through the critical temperature T, the Higgs field
¢ will tend to develop an expectation value (¢) corresponding to some point in the manifold M of
equivalent vacua. However, since all points in M are equivalent, the choice will depend on random
fluctuations and will be different in different regions of space. One can introduce the correlation length,
& such that the “directions” of (¢) are uncorrelated at points separated by a distance greater than & [In
the model (3.1) the “direction” of (¢) is determined by the phase 6, and £ is the length beyond which
the phases of (¢) are uncorrelated.]

Correlations in the field ¢ can be described by a thermal average

G(x-x')=(¢"(x, ) o(x", 1)). (3.6)
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For the model (3.1) at T > T, we can write

&k
@ W')swk

G(x-x))=2 j expfik(x — x')}Hexp(wi/T) - 1)} 3.7

0

where wi = k?+ m?(T) and I have subtracted the vacuum contribution to G, which is of no interest to
us. We shall assume that T is sufficiently close to T, so that m(T)< T. Then it is easily shown that for
|x —x'|=r< T " we have G(r)= T%6 and for r> T"!

G(r)= %; exp{-m(T) r}. (3.8)

At T> T, m(T)-0 and the correlations decay with distance like r~* for r> T;'. Thus, for a
second-order phase transition, the correlation length is given by’

E~T:. (3.9)

For a first-order phase transition which proceeds through bubble nucleation and coalescence, the
correlation length can be greatly increased. However, in any event, £ should satisfy the causality
constraint: correlations cannot establish on scales greater than the causal horizon: ¢ < ¢y [3]. ¢4 is
defined as the distance travelled by light during the lifetime of the universe:

b)) = alt) j ;‘-j(i—) (3.10)

If the phase transition is not of inflationary type (that is, if the universe does not become dominated by
the vacuum energy), ¢y is always ~¢, and we can write

¢st., (.11)

where . is the time at which the phase transaction is completed.

Much of the initial random variation of (¢) will die out in the course of further evolution, since a
uniform Higgs field is energetically preferred. However, in many cases, topologically stable defects will
be left behind which cannot, for topological reasons, be eliminated by a continuous evolution. The types
of possible defects are determined by the topology of the manifold, M, as first discussed by Kibble [3].
(See also ref. [25).)

*It is often said that the correlation length in second-order phase transitions diverges at T = T.. The apparent discrepancy is resolved very
simply: the definition of the correlation length used in condensed matter physics is different from our definition of £ A condensed matter physicist
defines the correlation radius . as the distance beyond which correlations decay exponentially. In our example, 7.~ 1/m(T)—>® as T- T..
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2. Topological defects
4. Domain walls

Domain walls are formed when a discrete symmetry is broken. The simplest model of this sort is
L=30.0F-3A(¢>— n°) 4.1)

where ¢ is a real scalar field. The symmetry is Z,: ¢ - —¢, the minima of V(¢) are at ¢ = +7, and so
the manifold M consists of only two points. As we go from a region with (¢)= + to a region with
(¢) = —n, we should necessarily pass through (¢)= 0, and thus the two regions must be separated by a
domain wall of false vacuum.

The wall is described by a classical solution of the field equation

O + 20 (4% 7)) =0. 42)
For a plain wall in the xy-plane the solution is [9]

¢o(2) = n tanh(z/8), 4.3)
where 8 = A""27! is the thickness of the wall. The false vacuum energy density is p, ~ An*, and the

surface energy density of the wall is o~ p,8 ~ AY?*p>. To calculate o exactly, we can compute the
energy-momentum tensor for the solution (4.3),

Tp = 3,0 3 — g L. (4.9)
This gives

T% = f(z) diag(1, 1,1, 0) @.5)
where

f(2)= An*[cosh(z/8)]* (4.6)

is a bell-shaped function of width ~& peaked at z = 0. The surface energy density is given by

0'=f T3dz =393, 4.7

Note the important fact that T in eq. (4.5) is invariant with respect to Lorentz boosts in the
xy-plane. This is not surprising, since ¢o(z) is a scalar field independent of x, y, ¢ and thus having the
same invariance. Therefore, it makes sense to talk only about transverse motion of the wall; motion in
tangential directions is unobservable. Strictly speaking, this applies only to plane walls, but macroscopic
walls with curvature radii R > 8 can locally be considered as flat.

In general, domain walls form when the manifold M has two or more disconnected pieces. They can
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be classified by the homotopy group (M), which counts the disconnected components of M. [In our
example 7o(M) = Z,.] Examples of GUTs with domain walls can be found in ref. [8].

5. Strings

The simplest model that gives rise to strings is that of a complex scalar field ¢ with a self-interaction
of the form (3.1). After the phase transition ¢ develops a VEV {¢) = 7 €'°, where 8 varies on the scale
of the correlation length & Since (¢) is single valued, the total change of # around any closed loop in
space must be equal to 27n, where n is an integer:

AG=2mn. (5.1)

Consider a closed loop with A@ =27 and imagine continuously shrinking the loop to a point. If no
singularities are encountered, the value n =1 in eq. (5.1) cannot discontinuously change to n =0, and
thus we must encounter at least one point where the phase 6 is undefined (which means (¢) = 0). This
shows that at least one tube of false vacuum should be caught inside any loop which has A # 0. It is
clear that such tubes, which are called strings, can have no ends and must be infinite or closed
(otherwise, it would be possible to contract the loop without crossing the string).

The properties of strings produced by breaking local and global symmetries are somewhat different.
First consider the case of a local U(1) symmetry,

L=D,¢"D*¢ —3F,, F* =308 ¢ - n°), (2
where D, = 3, —igA,, F,.. = 3,A, — 4,A, and g is the gauge coupling. A string solution in this model

was first discussed by Nielsen and Olesen [26]. In cylindrical coordinates (r, 6, z) the Higgs field at large
distances from the string has the form

p=nem, (5.3)

where n is an integer, and the gauge field is
1
A, ~—9,Ing. (5.4)
18

The asymptotic forms (5.3) and (5.4) are such that F,, =0 and D,¢ =0, so that the energy density
vanishes outside the string core. (These forms are approached exponentially as r— o [26].) Using the
Stokes’ theorem we find

J'B-ds=§,4-d(=2m/g, (5.5)

where B= Vx A is the magnetic gauge field. We see that the string carries n units of elementary
magnetic flux. [Strings in this model are very similar to the quantized tubes of magnetic flux in
superconductors.] An elementary string corresponds to n = 1. Strings with |n|>2 are probably
unstable and decay into elementary ones [42].
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The radius of the string core is determined by the Compton wavelengths of the Higgs and vector
mesons: 8, ~ m3' and 84~ ma', where my = A"y and ma = gn are the corresponding masses. For
mg < ma, which is usually the case, the string has an inner core of false vacuum with linear mass density
He ~ p83~ 1% and a tube of magnetic field of radius 8, > 8, with ua ~ B26%~ 52 Thus, the total
mass of string per unit length is [26, 3]

w1 (5.6)

Strings of cosmological interest have sizes much greater than their width. In this case the internal
structure of the string is unimportant and physical quantities of interest, such as the energy-momentum
tensor T}, can be averaged over the cross-section. For a static straight string lying along the z-axis we
define

T,::a(x)a(y)f T dxdy. 5.7

The string solution is invariant under Lorentz boosts in the z-direction, and thus T9= T3 with all other
components equal to zero except, perhaps, T with i = 1, 2. To show that these remaining components
are also equal to zero, we can use the conservation law, T}, = 0, and write

le,i,, #*drdy=0, (5.8)
where all indices take values 1 or 2. Integration by parts gives

[Tﬁ‘dxdy=0 (Lk=12). (5.9)
Thus, the energy-momentum tensor of the string is given by

T = u diag(1, 0,0, 1) 5(x) 8(y). (5.10)

The tension along the string is equal to the energy density. [One can say that the general form of T,
for walls and strings can be obtained from the vacuum energy-momentum tensor by dimensional
reduction. In vacuum, Lorentz invariance requires that T}, « g% = diag(1, 1,1, 1).]

6. More complicated strings

Breaking a U(1) symmetry is one but not the only way to make strings. In the general case, strings
are formed when the manifold M of equivalent vacua is not simply connected (that is, if it contains
unshrinkable loops). Strings are classified by the first homotopy group 7, (M), which counts the
equivalence classes of loops in M. In the example of the previous section G = U(1), M is a circle and
m(M) = Z, the group of integers (they are the integers appearing in egs. (5.1) and (5.5)). The general
condition for the formation of strings can thus be written as

mM)#1, 6.1)

where I is the trivial group.



274 A. Vilenkin, Cosmic strings and domain walls

The following theorem from the homotopy theory is very useful for analyzing the topological defects.
Suppose that the group G is broken to a subgroup H: G- H.

Theorem. If m,(G) = m,_1(G) =1, then

T,(M) = m,—1(H) , 6.2)
where the equality sign “="" indicated isomorphism.
In particular, if m1(G) = 7o(G) =1, then

m(M) = mo(H) . 6.3)

Equations (6.1), (6.3) imply that strings can be formed in a phase transition G— H only if 7o(H) # I. This
means that the unbroken group H should contain a discrete symmetry [27]. (This conclusion does not
apply to the model (5.2), since m[U(1)] =Z#1.) A fairly common example of this sort is when the
group H is a product of a continuous group and Z,, e.g. [27]

SO(10)- SU(5) X Z, . (6.4)

Z, strings formed in this phase transition have no direction and any two parallel strings can be
annihilated by one another. Examples of realistic GUTs with strings can be found in refs. [13, 27, 28].

If the symmetry breaking is G~ K X Z, with n > 3, then strings can form vertices with several strings
joining at the vertex. Even more exotic strings are formed when the first homotopy group (M) is
non-Abelian. In this case the strings corresponding to noncommuting elements of (M) cannot pass
through one another [29, 3] (More exactly, when two such strings move through one another, a third
string is formed stretching between the two.) No realistic models with noncommuting strings have yet
been suggested.

7. Global strings

Strings can be formed as a result of local as well as global symmetry breakings. We shall call them
local and global strings, respectively. The topological conditions for the formation of strings are the
same in both cases, but the physical properties of local and global strings are somewhat different. Local
strings were discussed in section 5, and here we shall concentrate on global strings [5).

The simplest case is that of a global U(1) symmetry. The Lagrangian is given by eq. (5.2) with A, set
equal to zero:

L=3,4"0"¢—3A(d"d— 7). (7.1)

Like before, the phase of ¢ changes by 27 around the string, the radius of the core is § ~ A7, and
outside the core ¢ is given by ¢ = 5 exp(if). But now there is no gauge field to compensate the
variation of the phase # at r> & (and, of course, there is no magnetic flux associated with the string).
The mass per unit length of the string is
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R
R
ﬂ~n2+f Ilf-"i'zzmdrzzmnn—, (72)
r d6 é

&

where R is the cut-off radius. We see that u logarithmically diverges as R - «. Note, however, that the
energy of a closed loop is always finite: E ~ 5 R In(R/8), where R is the size of the loop and I have
assumed that the loop is momentarily at rest. The In R factor reflects a long-range interaction between
different parts of the loop, which is due to the presence of a massless Goldstone boson. Two parallel
strings with opposite signs of A@ attract one another with a force per unit length F ~ »*/R, where R is
the distance between the strings. (Compare with local strings for which the interaction dies out
exponentially with distance.) Note also that global strings are analogous to quantized vortex lines in
liquid helium.

Realistic grand unified models with global strings can be easily constructed [5,30]. The simplest
model is the minimal SU(5) which has an “accidental” global B — L U(1) symmetry. Breaking U(1)s_.
gives rise to strings.

8. Monopoles

Monopoles [31] are point defects which form when the manifold of equivalent vacua, M, contains
unshrinkable surfaces, that is, when

m(M)#1. , 8.1)

(M) is the homotopy group classifying unshrinkable surfaces in M.
Suppose that the group G is such that 7;(G) = w(G) = I (all currently popular grand unified groups
satisfy this condition). Then, applying the Theorem of section 6 for n = 2 we find

(M) = m(H). 8.2

From (8.1) and (8.2) we obtain the condition for the formation of monopoles: m,(H) # I. For example,
monopoles will be formed at a phase transition

G-Kx U(1) 8.3)

(since 7,[U(1)] = Z). In the sequence of symmetry breakings from G down to SU(3)X U(1)em, a U(1)
factor must first appear at some stage, and thus the formation of monopoles in the early universe cannot
be avoided.

For monopoles produced as a result of a local symmetry breaking, the energy density decays
exponentially with distance form the center. The mass of such monopoles is [3]

m~4mn/g. 8.4

For global monopoles, the variation of the Higgs field ¢ outside the core is not compensated by a gauge
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field, and the total energy is linearly divergent. This means that monopoles and antimonopoles are
attracted with a confining force independent of the distance.

In this paper we will be interested in monopoles only in the context of monopoles connected by
strings (see the next section). For a detailed discussion of monopoles and their evolution, see refs. [3, 10]
and Preskill’s paper in ref. [23].

9. Monaopoles connected by strings

Monopoles formed at a phase transition can get connected to strings at a subsequent phase transition
[7, 8]. A typical sequence of phase transitions leading to this series of events is

G->KxU(1)-K. 9.1)

The first phase transition gives monopoles carrying the magnetic flux of the U(1) gauge field. At the
second transition the magnetic field is squeezed into flux tubes connecting monopoles and antimono-
poles. Closed and infinite strings can also be formed.

In this class of models strings are not topologically stable and can break producing monopoles and
antimonopoles at the free ends. However, breaking of the string is a tunneling process and its
probability is typically very small. A semiclassical calculation gives [7)

p « exp(=mm’/u), ©-2)

where m is the monopole mass and g is the string tension.

An interesting model of the type (9.1) has been suggested by Langacker and Pi [32] as a possible
solution to the problem of overabundance of superheavy monopoles. The sequence of phase transitions
is

SU(5)- SU@G) x SU@) x U(1) = SUB) = SUB) X U(L)ern - 9.3)

Monopoles formed at the first transition get connected by strings at the second phase transition. But at
the third phase transition the U(1) symmetry is restored and the strings disappear.

The possibility of a symmetry restoration at low temperatures was first discussed by Weinberg [2].
The properties of topological defects in this type of models are somewhat different from the usual case,
and we shall briefly discuss the difference. Consider a finite-temperature effective potential of the form

Vr(¢)=m*(T)¢* ¢ +3A (¢™ ¢F, 9.4)
where
m¥T)=m?*0)+ AT>. 9.5)

The parameter A is determined by the interaction of ¢ with effectively massless degrees of freedom. A
can be approximately constant over a wide range of temperatures, but can also change at mass
thresholds and at phase transitions. It is usually assumed that m?(0) <0 and A >0. Then the symmetry
is broken at low temperatures and the analysis of section 3 applies. Suppose now that m?(0) > 0 and that
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A becomes negative below some temperature T, > m(0). Then at T < T; the symmetry is broken and ¢
develops a VEV

K#) = (Al]A)? T(1- T3 T?'"~, (9.6)

where T, = |A["?m(0) < T;. At T = T, (¢) = 0, and below T, the symmetry is restored. (Quasi) stable
string solutions exist only in the range T,>T>T,. For T> T, the width of the strings is § ~
1|m(T)| ~ |A|"2T", the false “vacuum” energy density is p, ~ A{(¢)* ~ A>A™' T*, and the linear mass
density of the string is

p~(AIA)T?. ©.7)

As T T,, we have § >, u -0, and the strings “dissolve”’. The most important difference of this
model from the usual case is that the physical characteristics of strings depend on the temperature in an
essential way.

10. Walls bounded by strings
Consider the sequence of symmetry breakings
G->KxZ,-K. (10.1)

The first transition gives rise to strings (see section 6) which get connected by domain walls at the
second phase transition [4, 6].

Walls bounded by strings can also be formed due to breaking of an approximate symmetry [5]. As an
example consider a model with an approximate global U(1) symmetry

L=20,6"0"¢—3A(¢" & — 7>+ 2m*cos N0 — 1), (10.2)

where @ is the phase of ¢, ¢ = p €%, and N is an integer. This is a reduced version of the invisible axion
models designed to solve the strong CP problem [33-35). In such models m ~1GeV and > m
(typically, 7 ~ 10°-10" GeV). The approximate U(1) symmetry of (10.2) corresponds to the anomalous
chiral Peccei-Quinn symmetry which is explicitly broken by instantons at the strong interaction mass
scale m. We shall first consider the case of N = 1, when the potential has the shape of a Mexican hat
slightly tilted by the presence of the §-dependent term.

The field ¢ acquires a nonzero VEV when the universe cools to a temperature 7 ~ 7. At such
temperatures the last term in (10.2) is negligible, and we get global U(1) strings, as discussed in section
8. At sufficiently low temperatures the #-dependent term in (10.2) becomes important. The minimum of
energy (for N = 1) corresponds to 8 = 0 (mod 27). However, the phase 8 cannot become equal to zero
everywhere, since it changes by A@ = 27 around the strings. Hence, # tends to settle down to zero at all
points around a string, except within a domain wall, so that 6 changes by 27 across the wall [5].

To see that the model (10.2) indeed has domain wall solutions, we note that, away from the string
cores, the VEV of ¢ is (¢) = 7 €, and the effective Lagrangian for 6 is

Ly=1%3,08"0+2m"(cos 0—1). (10.3)
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The corresponding wave equation is
O80+misinf=0, (10.4)

where m, = m?/y is the axion mass. Equation (10.4) is the so-called sine-Gordon equation which is
known to have domain wall solutions (solitons) [25]:

6(x) = 4 tan"" exp(m.x), (10.5)

where x is the axis perpendicular to the wall. The thickness of the wall is § ~ m;* and the energy per
unit area is [25)

o=16m?q. (10.6)

Domain walls in this model (as well as in the model (10.1)) are not topologically stable, and there is a
nonzero probability for the formation of a hole in the wall bounded by a string. However, for m <7 the
tunneling probability is exponentially small [4].

The analysis of the case N =2 is very similar, and here I shall only indicate the differences. The
minima of the potential are at 6 = 2#n/N with n=0,1,..., N—1, and so there are N distinct vacua
which can be separated by topologically stable walls [34]. The phase 6 changes by 2#/N across the
“minimal” wall. (There can be walls with A8 = 27n/N, but they are probably unstable.) Since 8 changes
by 27 around a string, each string gets N domain walls attached to it.

3. Physical processes with strings and walls
11. Dynamics of strings

In this section we shall discuss the dynamics of macroscopic strings assuming that their dimensions
are much greater than the thickness 6.
The space-time trajectory of a string can be parametrized as

x=x*({*); a=0,1 (11.1)

where {° is a timelike and ¢* is a spacelike parameter. In this and most of the following sections we shall
consider only local strings which do not interact with a long-range Goldstone field. The action
functional, S, for such strings should satisfy the following requirements: (i) S should be invariant under
general coordinate transformations; (ii) § should be invariant with respect to a reparametrization

(80 112

(iii) the action should have the form of an integral over the 2-dimensional world sheet (11.1). The
“building blocks” for the action are the functions x*({“) and the string tension, u.
These three conditions determine the action uniquely, up to a numerical factor:
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S=-u ™17, (11.3)

where g@ is the determinant of the 2-dimensional metric tensor on the surface, g3 = g,.x%x% and
xh = ox*[al*:

g =3x"-(x-x')Y. (11.4)

Here, a - b = a*b,, x* = 9x*/3{° and x'* = ax*/3{.

Equation (11.3) is the Nambu action for a relativistic string [26, 36]; the integral in this equation is
just the surface area of the world sheet described by the string. If we take {* to be the length along the
string ¢ and {° to be the time ¢, then eq. (11.3) takes the form [26]

s=—#jmjdza—vﬁm, (11.5)
where
ox o0x (0x ox
v 119

is the transverse velocity. Equation (11.5) is easily understood if we note that only the transverse motion
of the string is physically observable.
The equations of motion for a string are

9 oLy oL
a° (axf;) "o 0 (11.7)

where L = —u[— g®]"2 is the string Lagrangian. The last term in (11.7) is nonzero only if the metric g,.,
depends on x*. Let us first consider the dynamics of strings in flat space-time, where eq. (11.7) takes the
form

i{(i-x'[x'“—x’zx"} _a_{(x_-x_')x“—xzx'"}_o (118)
P (% - x'P -2 x?"?) o (k- X' - 2 x? ' ' '

The equations of motion can be simplified by a suitable choice of the parameters £°, ¢*. We can
choose ¢° to be the time coordinate and {* to be one of the spatial coordinates, say,

=t {=x (11.9)
Then the string trajectory is described by two functions, y(x, ¢) and z(x, ), and it is easily verified that
y=fxxf), z=g(x=*9) (11.10)

is a solution of eq. (11.8) for arbitrary functions f and g [38]. These solutions describe waves of arbitrary
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shape propagating along the string with the velocity of light. Note that a superposition of waves
travelling in opposite directions is not, in general, a solution, since eq. (11.8) is nonlinear.

A different choice of parameters {°, {* is convenient for studying closed loops of strings. The gauge
freedom (11.2) allows us to impose two gauge conditions which we can choose as [36, 37)

iox'=0;  #B+x?=0. (11.11)

(x'* and x* are spacelike and timelike, respectively.) Then the equation of motion (11.8) takes the form
of a wave equation

i +x"™=0. (11.12)
The conditions (11.11) do not fix the gauge completely. There still remains the freedom of trans-

formations (11.2) with ¢'= /%, /"= {°, which implies

=

(-i=0. (11.13)

We can use this remaining freedom to set /°= x° [note that this is consistent with egs. (11.12), (11.13)).
Then the trajectory of the string is described by a vector function x(¢, t), where I have set {'=¢, and
egs. (11.11), (11.12) give

xx'=0; ¥+x?=1; (11.14)
i-x"=0. (11.15)

The physical meaning of these equations can be easily understood. The first of eqgs. (11.14) says that
the vector X is perpendicular to the string and thus represents the physically observable velocity, v,.
The second constraint equation can be written as df = (1 - ¥?)"? |dx| = dM/u, where

M=,uf(1—.\'72)_1/2df=,u,jd£ (1L.16)

is the energy (mass) of the string [compare with eq. (11.5)]. Thus we have chosen { to be proportional to
the mass of string (counted from some arbitrary point on the string). For a closed loop { changes from 0
to M/u around the loop, where M is the total mass of the loop. Finally, eq. (11.15) tells us that the
acceleration of a string element in its local rest frame (¥ = 0) is inversely proportional to the local
curvature radius, R = |d*x/d¢?|"". The direction of ¥ is such that a curved string tends to straighten
out. (Of course in doing so, it develops a velocity and therefore keeps oscillating.)

The general solution of eq. (11.15) is

x(&, ) =4a(l-0)+b({+1)], (11.17)
and eqgs. (11.14) give the following constraints for the otherwise arbitrary functions a and b:

a?=b?=1. (11.18)
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The energy-momentum tensor of a moving string is [39]
T*(r, )= p j dg (2 — ¥ 1) 69(r — x(4, 1)) (11.19)
and the angular momentum is
J=p j drx(L )X #(2 1) (11.20)

(in the gauge (11.14)).

12. Oscillating loops

The motion of a closed loop in its center-of-mass frame is described by a solution of the form (11.17),
(11.18), where a(¢) and b(¢) are periodic functions with period L = M/u. and M is the mass of the loop:

a({+L)=a({); B({+L)=b({). (12.1)

It is clear from eq. (11.17) that the motion of the loop must also be periodic in time with the same
period. In fact the actual period is twice shorter, T = L/2 rather than T = L, since it is easily seen that
[40]

r({+ L2, e+ L2)=r({0). (12.2)

An interesting property of the loop solutions is that, in the generic case, the string reaches the
velocity of light at some points at certain moments during the period [39]. From eq. (11.17) we have

P& )=da'((-n-b(+ P (12.3)

Now, it follows from (11.18) and (12.1) that the vectors a'({) and —b’(¢{) describe closed curves on a
unit sphere as { runs from 0 to L. In the generic case, these two curves will have two or more
intersections. [Note that since [ @’ d{ = [ b’ d{ = 0, neither of the two curves can completely lie in one
hemisphere of the unit sphere.] Let { = £, be one of such points, a’({,) = —4'({). Then

(&%, nL)=1, (12.4)

where n is an integer.

We now turn to specific examples of loop trajectories. The periodic functions @ and b can be
expanded in Fourier series; then the constraints (11.18) give nonlinear algebraic equations for the
coefficients. Exact solutions can easily be obtained in which only a few lowest frequencies are present.
Several families of such solutions have been found by Kibble and Turok [40] and by Turok [39]). The
simplest type of solution involving only one frequency is
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L
x(&n= yymi {é, (sin o~ + sin ) — é, (cos o— + cOs ¢ COs 7.} — é3 8in ¢ cos 0.}, (12.5)
where
2
.= —L’i (=1, (12.6)

é; are unit vectors in the directions of the Cartesian axes, and ¢ is a constant parameter. Rotating the
coordinate frame by an angle ¢/2 around the direction of é, and performing simple trigonometric
transformations we bring eq. (12.5) to the form

L . ¢ . @ . .
x= . {é, sin o, cos oo+ é, cos r) €OS g, COS g + €3 sin 3 sin g, sin g}, (12.7)
T

where oo =2#t/L, o, = 2w{/L. At t =0, the loop has the shape of an ellipse in the xy-plane. It rotates
and stretches into a double line along the z-axis at ¢ = L/4. At this moment the ends of the double line
are moving in the x-direction with the velocity of light. At ¢= L/2 the loop returns to the elliptical
shape and then goes through the cycle again. The parameter ¢ takes values from 0 to 7. ¢ =0
corresponds to a circular loop which reaches the velocity of light as it collapses to a point. ¢ = 7
corresponds to a double line rotating in the (xz)-plane, its ends always moving with the velocity of light.

As we shall see in the next section, self-intersecting loops can intercommute and break into smaller
pieces. If all loop trajectories intersect themselves at some point during the period, then the loop will
rapidly decay into a cascade of smaller and smaller loops. Here, an important result has been obtained
by Kibble and Turok who have found a class of loop trajectories which never self-intersect.

It is easily checked that adding to (12.5) terms in cos2c. and sin20. does not yield any extra
solutions. The next simplest solutions involve cos 3o and sin 3g.. [40]:

L
¥= {é,[(1 - @)sin o- +3a sin 30- + sin 7., ]
w

- & [(1- a)cos o_ +3a cos 30— + cos 0.] — 265 [a (1 - @))"*cos 0} . (12.8)

Kibble and Turok have shown that for 0 < a <1 these loops never intersect themselves. The projection
of one such loop (a =0.7) on the xy-plane is shown in fig. 1 at times =0 and t= L/4. At = L/4 the
loop develops two cusps and the velocity of light is reached at the peaks. (All loop solutions studied so
far, excluding degenerate cases like a circular loop, develop cusps at the points of luminal motion.)

Turok [39] has studied a larger, two-parameter family of solutions with trigonometric functions of o.
and 30 and has found that a large fraction of the parameter space is occupied by never-self-intersecting
loops. To make this statement precise, one has to define a measure in the parameter space correspond-
ing to the actual distribution of loop configurations formed in the early universe. This has not yet been
done. At this time we can only say that the results of refs. [39, 40] do suggest that a substantial fraction
of loop trajectories never self-intersect. The decay mechanisms for such loops are discussed in sections
14 and 15.
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D

a) b)
Fig. 1. The xy-projection of the loop (12.8) with @ = 0.7 (a) at =0 and (b) at ¢ = L/4.

13. Intercommuting

Intersecting strings can intercommute [3] (or change partners) as shown in fig. 2. This process plays a
crucial role in the evolution of strings, and it is important to know the intercommuting probability, p.
Strings are described by classical solutions of the field equations, and one can expect that their
intercommuting occurs at the classical level as well. Then the intercommuting process is totally
deterministic, and the word “probability” refers to averaging over collision angles and relative velocities
of the strings.

It appears that the only way to estimate p is to find numerical solutions of the nonlinear field
equations describing colliding strings. Such an analysis has been recently done by Shellard [42] for the
case of global strings of the model (7.1). He considered two strings at right angles moving towards one
another with a relative velocity up to 0.5 c. The result is that the strings intercommute in all cases
considered. It may well be that intercommuting is angle- and model-dependent, but these results do
suggest that intersecting strings intercommute with high probability.

Shellard has also studied intercommuting of walls with walls bounded by strings (see fig. 3). The
result is, again, that intercommuting occurred in all cases considered.

Let us consider the effects of intercommuting on oscillating loops of strings. If a loop of mass M
self-intersects, it breaks into two loops, which we shall assume to have roughly equal masses. These
daughter loops can be of self-intersecting or non-intersecting varieties, and we can introduce the
probability, w, for a loop to be non-intersecting. Let us first consider the case when w =0 and the loops
rapidly decay into a cascade of smaller and smaller loops. When the size of the loops becomes
comparable to the string width & ~ ™! (their mass being ~ ), they decay into elementary particles.

At each intercommuting, a certain fraction f of the energy of the splitting loop will go into the kinetic
energy of daughter loops. Thus, after » splittings we have ~2" loops of energy

n~2"M | (13.1)

\V4 )
» ?\ »
/\

Fig. 2. Intercommuting strings. Fig].l 3. A wall bounded by string intercommutes with another domain
wall.

WALL
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and rest mass

m,~((1-1)/2)’M. (13.2)
The loops decay when m,, ~ 7, and the number of steps required is

__In(M/n)
In@2/(1-f))’

If f is not too small (f > n3") the smallest loops and the resulting particles will be extremely relativistic:

(13.3)

Yo~ Enltn ~ (1= f)". (13.4)

The oscillation period of the loops in their respective rest frames is 1 ~ m,/2u, but in the frame of the
initial loop #, ~ Y.t ~ 27"MJ2u. Hence the timescale of the whole decay process is

i~ bt~ M. (13.5)
n=0

Let us now turn to the case when there is a nonzero probability for daughter loops to form in
non-intersecting configurations, w # 0. Partial decay of an ensemble of loops with initial masses ~M
will then give rise to a spectrum of non-intersecting loops with masses <M. The average number of
loops with mass ~27"M is ~2"(1— w)"wN, where N is the number of original loops. (Smaller loops of
the spectrum will be relativistic, and 27"M should be regarded as their energy, not the rest mass.) The
fraction of total mass carried by such loops is ~w(1— w)". For w not too small, most of the mass is in
the loops comparable in size to the original ones.

14. Gravitational radiation from loops
The dominant energy-loss mechanism for non-intersecting loops is the gravitational radiation. Loops

of size R have a typical frequency w ~ R™?, and one can estimate the radiation rate using the
quadrupole formula [12]:

dM/dt ~ -GM?R*w® ~ - Gu?>. (14.1)
Here, M ~ uR is the mass of the loop. The lifetime of the loop is then

T~ MJ|M|~ R/Gu. . (14.2)
If the energy scale of strings is n < m,, where m,~ 10" GeV is the Planck mass, then

Gu ~(n/m, P <1. (14.3)

For a typical grand unification energy scale, n ~ 10" GeV and Gu ~ 1078,
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The motion of loops is relativistic, and we have seen that at one moment during the period certain
points of the loop actually reach the velocity of light. This indicates that the quadrupole formula is
quantitatively incorrect. A more reliable estimate of the radiation rate can be obtained using the
following general equations [43]

dP = dP,

02w (14.9)
dP, Gw>
0" ——:— (T*,(@n, k) T** (wn, k)~ | T %(n, K} . (14.5)

Here, dP,/d{2 is the intensity of radiation at frequency w, = 4mwn/L per unit solid angle in the direction
of k, |k| = w, and

2
T (w,, k) = 7 j dt exp(iwy?) j &x exp(=ik - x) T**(x, 1) (14.6)

is the Fourier transform of the string energy-momentum tensor (11.19). Equations (14.4)~(14.6) give the
gravitational radiation from a periodic source with period T = L/2 to the lowest order in G and without
any further assumptions about the source. The total power of the radiation is

M=-3P,. (14.7)

Turok [39] has applied this formalism to simple string configurations which, however, have little
resemblance to actual loop trajectories. A numerical calculation of the radiated power for the exact
loop solutions found by Kibble and Turok has been done in ref. [41]. Here we shall summarize the
results.

The energy loss per unit time by an oscillating loop is given by

M=—yGu?, (14.8)

where y depends on the particular loop trajectory, but is typically ~100. Figure 4 shows vy as a function

Y

150
+
+
100}
+
+
+

50} test

0 4 ¢/

0 Y 1.0

Fig. 4. Gravitational radiation power for the family of loops (12.7).
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of the parameter ¢ for the family of solutions (12.5). The minimal value of vy in this family of loops is
~50. Similar results are obtained for non-intersecting loops found in refs. [39, 40). The large values of y
are partly due to the significant contribution of high frequencies.

An asymmetric loop configuration can radiate momentum and accelerate like a rocket. A numerical
calculation for several asymmetric loops gives [41] |[P|~ 10 Gu? With such an acceleration, a loop
would develop a velocity v~ (P/M)7~0.1 by the end of its lifetime. However, due to angular
momentum radiation, the direction of P gradually changes. With L ~ G 2 R, the loop rotates by ~ 7 in
At~ (Gu) “?R. The velocity developed in time At is ~ (Gu)"?. Besides, in the cosmological context,
the “gravitational rocket” effect is counteracted by the gravitational drag due to small-angle scattering
of particles [20, 21].

15. Electromagnetic radiation

For macroscopically large loops, only emission of massless particles can be important. If R is the size
of the loop, then its typical frequency of oscillation is @ ~ R™?, and the emission of particles with masses
greater than R™" is suppressed. Assuming that neutrinos have nonvanishing masses, the only process
competing with the gravitational radiation for macroscopic loops is the electromagnetic radiation.

The strings are characterised by the expectation values of a Higgs field ¢ and a gauge field W,. Since
(@) is invariant under operations of the unbroken subgroup H, including the electromagnetic gauge
transformations, it follows that ¢ is electrically neutral and does not couple to the electromagnetic field
A,. Couplings of the form W2A and W3A are also absent [44] because of the antisymmetry of the
group structure constants. Thus there is no interaction term coupling a single photon field to the fields
of the string. Two-photon emission can occur due to the quartic couplings, W2A?, and this is the
dominant radiation mechanism. (Couplings of this form are present if the generators corresponding to
the fields W, and A, do not commute.) The corresponding diagrams are shown in fig. 5. The radiation
rate has been estimated in ref. [44] by first studying the photon emission from small oscillations on
straight strings (the small parameter being wa, where a is the amplitude of oscillations) and then
extrapolating the results to the case of large amplitudes (wa ~ 1). The result is

M, ~-R™? (15.1)

where R is the size of the loop. The answer is independent of the gauge coupling g, since the gauge field
of the string is proportional to g~*

Photon emission can also occur due to vacuum polarization processes. An example of a diagram with
a fermion loop is shown in fig. 6. Such diagrams turn out to be suppressed by powers of 8/R, where & is
the thickness of the string.

Comparing eq. (15.1) with the gravitational radiation rate (14.1), we see that for macroscopic loops of
mass M > m,~ 10~° g the gravitational radiation is the dominant energy loss mechanism.

Fig. 5. Diagrams for two-photon emission from an oscillating string. The solid lines represent the classical gauge field of the string, the barred solid line
represents other heavy gauge fields, and wavy lines represent photons.
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Fig. 6. Vacuum polarization diagram for electromagnetic radiation from a string. The dashed line represents the scalar Higgs field of the string, and the
directed solid lines represent fermions.

16. Strings in expanding universe

In this section we shall derive the equations of motion and discuss the behavior of the strings in the
Robertson-Walker metric (2.1). It will be convenient to use the conformal time variable 7, dr = d#/a(t),
so that the metric takes the form

ds? = a*(r) (dr* - dx*-dy?*-dz?). (16.1)

In a radiation-dominated universe (a x t'?) we have 7« 2 a(r)x 7 and in a matter-dominated
universe (a x #?) 7« '3, g x 72,

One can derive the equations of motion of a string from the action (11.3) and then try to solve them
analytically or numerically. The case tractable analytically is that of small perturbations on a straight
string.

Let us first choose the gauge

;0 =r, Zl =x | (16.2)

[compare with (11.9)] and assume for simplicity that the string moves in the (x, y)-plane, z = 0. Then
the string trajectory is described by one function y(x, 7) and the string Lagrangian takes the form

=-p[-g®)?=—pa*(r)(1+y”-y?)"”, (16.3)

where dots and primes represent derivatives with respect to 7 and x respectively. The corresponding
equation of motion is

.
(Z+22) i+ y =y A= Iy (4 y 2=y, (16.4)

Obviously, a straight line, y = const., is a solution. A straight string remains straight and is simply
stretched by expansion. Taking y =0 as the unperturbed solution, we shall now consider small
perturbations on a straight string.

In a radiation-dominated universe and assuming

y? y2<l, (16.5)
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eq. (16.4) becomes

y+2r7ly-y"=0 (16.6)

and plane wave solutions of the form y(7)e™** are easily found [38]:

y(7)= Ay 77" sin(kr), (16.7)
y(r) = Ay 77t cos(kT) . (16.8)

Here, A, and A, are constant coefficients. It should be remembered that x and y are co-moving
coordinates and 2/k is the co-moving wavelength of the wave. The physical wavelength A = 27 a(7)/k
grows proportionally to the scale factor. The quantity k7 ~ #/A gives the ratio of the horizon size to the
wavelength (by order of magnitude).

Let us first consider the case when both the wavelength and the amplitude of the wave on a string are
much greater than the horizon: kT <1, A > 72 In this case, solutions (16.8) do not satisfy the conditions
(16.5) and only solutions of the form (16.7) should be considered. In the limit k7— 0, (16.7) reduces to a
constant. The string does not move in co-moving coordinates, which means that it is being conformally
stretched by the expansion: both amplitude and wavelength grow like a(7), the shape of the string
remaining unchanged.

Now consider the opposite limiting case when both the amplitude and the wavelength are smalier
than the horizon: kr>1, A <72 In this case, the wavelength still grows like a(7), but the physical
amplitude of the wave, a(r) A 77!, remains constant. As the ratio of the amplitude to the wavelength
decreases, the string becomes less and less curved. Similar results can be obtained in the general case of
a power-law expansion: a(r) « 7= [47).

Extrapolating this perturbative analysis to the case of strongly curved strings, one expects that, in
general, waves bigger than the horizon are conformally stretched, while the irregularities on scales
smaller than the horizon are smoothed out [38,12]. Numerical calculations of refs. [45,46] are in
qualitative agreement with this picture.

To give some examples of the behavior of strings in the early universe, first consider a circular loop

of initial radius R, much greater than the horizon at time %, Ro> ty, assuming a(¢) « #'%. The loop is
stretched like the scale factor,

R(t)= (t16)"*R, (16.9)
until it comes within the horizon. This happens at ¢ = t, such that R(#,) ~ t.:

th~ R3/to . (16.10)

At this time, the radius of the loop begins to decrease. When the loop is much smalier than the horizon,
effects of expansion are unimportant, and it collapses to a point with relativistic speed, just like it would
in flat space-time. '

As another illustration, consider a large irregular loop having overall size Ro> 4, but locally having
the shape of a 3-dimensional random walk of step & ~ f. Then the initial total length of the loop is
o~ R3/&. (As we shall see later, strings formed at a phase transition in the early universe have
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Brownian shapes.) In the course of expansion the size of the loop is conformally stretched like in eq.
(16.9) until the loop becomes smaller than the horizon at ¢~ #,. Since irregularities on scales smaller
than the horizon are smoothed out, at any time ¢ < #, the loop has the shape of a random walk of step
£~ ¢, and its length is

£(t) ~ R*(t)/t ~ const . (16.11)
if the universe is radiation-dominated, and
o(t) < £'? (16.12)

in a matter-dominated universe. By the time the loop comes within the horizon it loses its Brownian
appearance and is relatively smooth. When the size of the loop is much smaller than the horizon, effects
of expansion can be neglected, and we have a regular oscillating loop.

To conclude this section, I would like to give another form of the equations of motion for a string in
expanding universe, which is useful for computer calculations. A convenient choice of gauge is

=7, ¥-x'=0 (16.13)
and the equations of motion in this gauge are [45]

6+2(dla)(1- v)v=e"'(e'x'Y (16.14)

é=-2dla)ev?. ' (16.15)

Here, v = %, £ = |x'| (1- v?)™"2, dots and primes are derivatives with respect to 7 and ¢, respectively.
Equation (16.15) is not an independent equation; it follows from egs. (16.14) and (16.13). This equation
describes how the energy of the string

M(r) = u a(r) j edl, (16.16)

changes with time. If the string is practically at rest with respect to local co-moving frames (v = 0),
¢ ~const. and its mass grows like a(#). For a rapidly moving string £ decreases and the rate of growth
of the energy is reduced. This can be understood in terms of the usual redshift of the kinetic energy in
expanding universe.

Note that egs. (16.13) do not fix the gauge completely. The remaining gauge freedom includes
reparametrizations of the form ¢ - £(¢). In flat space-time (d = 0) £ =0, and egs. (11.14), (11.15) are
obtained from (16.14), (16.15) if we choose £ = 1. It is clear that the gauge (11.14) cannot be imposed in
expanding universe, since the second of egs. (11.14) is inconsistent with (16.15). Equation (16.14) was
used in the computer calculations of refs. [45, 46].

17. Dynamics of global strings

As shown in section 7, the mass per unit length of a straight global string is
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u=2mn*In(R/6) 17.1)

and diverges in the limit of an infinite cut-off radius R. If we have two parallel strings with opposite
sense of A@ (so that A@=0 for a contour enclosing both strings), then the role of the cut-off
radius is played by the distance between the strings, and the two strings are attracted to one another
with a force (per unit length)

F = ou/oR ~2m?R. 17.2)

This force can be thought of as due to the interaction of strings with a long-range Goldstone field, 6.
Strictly speaking, both the Goldstone field and the string are described by the same complex field ¢
with the Lagrangian (7.1). However, for macroscopic strings, it may be possible to represent this
Lagrangian as a sum of real scalar field (#) and string terms plus an interaction term. To my knowledge,
this has not been done, and I am not aware of any quantitative results on the dynamics of global strings.
Some qualitative conclusions concerning the evolution of global strings can still be reached using the
following observation.

We shall see in chapter 4 that cosmological strings have Brownian shapes with typical curvature radii
comparable to the distance between the strings. The force per unit length due to tension in curved
strings is F ~ u/R and is greater than the interaction force (17.2) by a large factor In(R/8) ~ 100. This
suggests that the dynamics of global strings is dominated by tension, and thus should not be much
different from that of local strings. The main difference can be expected in the behavior of closed loops.
In the case of global strings, closed loop trajectories are probably not periodic, and there may be no
loops which never intersect themselves. String configurations corresponding to non-intersecting loops of
local strings will be gradually modified by the force of interaction between different parts of the loop,
and may intersect themselves after ~100 oscillations. Thus, one’s best guess seems to be that the
lifetime of global string loops is

7~ 100R. (17.3)

18. Dynamics of domain walls

The action for a domain wall can be derived in the same manner as the string action in section 11:
S=-0 j [ L. (18.1)

Here, o is the wall tension, £° ¢* and {2 are arbitrary parameters on the wall and g is the
determinant of the metric tensor on the 3-dimensional hypersurface described by the wall in space-time,
29 = g.. x4 x7%. It can be shown that eq. (18.1) is equivalent to

S=-¢ f d f ds (1- v2)2, (182)

where v, is the transverse velocity of the wall and dS is the surface element.
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We can use the gauge freedom 2 - %({) to fix the parameters ¢ as
{o=t, ('=x, [=y. (18.3)

Then the motion of the wall is described by one function z(x, y, f) and the action takes the form (in flat
space-time)

S=—o-jjjdtdx dy 1+ 22+ z;2- 232, (18.9)

The corresponding equation of motion is

()5 ()= 5 () =0 (18.5)
where y = (1+ 22+ z;2— %) 1t is easily checked that

z=f(xxt) (18.6)
solves eq. (18.5) for arbitrary f. Such solutions describe plane waves of arbitrary shape propagating on

the wall with the velocity of light.
The equation of motion for a wall in expanding universe (16.1) is

N YN N
(;+ 3 ;) (v2)=—(y22)~ > (y2;)=0. (187)

For small perturbations on a straight wall, z = z(7) exp(ik - x), eq. (18.7) takes the form
7+3(dla)z+k*2=0. (18.8)

As in the case of strings, it can be shown that waves greater than the horizon are conformally stretched
(z(7) =const.) and waves smaller than the horizon are smoothed out (z(7) x a=>?) [47].
19. Gravitational field of strings and walls

The gravitational field of strings and vacuum domain walls is very different from that of regular

massive rods and planes [14]. The difference is easily understood if we note that for a static matter
distribution with energy-momentum tensor

T: = diag(p, _Pl, —Pz, "P3) (19.1)
the correct Newtonian limit of Einstein’s equations is
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For nonrelativistic matter P, <p and V¢ = 47Gp. The energy-momentum tensor of a straight string
(5.10) has P,=P,=0, P;=—p, and eq. (19.2) suggests that straight strings produce no gravitational
force on surrounding matter. For a domain wall [see eq. (4.5)] P,= P,=-p, P;=0 and eq. (19.2) gives
V2¢ = —4wGp, indicating that the gravitational field of domain walls is repulsive.

The solution of Einstein’s equations for a string has been found in ref. [14] assuming that the
parameter Gu is small, which is the physically interesting case (u is the string tension). Large values of
Gu and the internal metric of the string are discussed in ref. [16]. Outside the string core the metric is

ds?>=df—dz*—dr—- (1-4Gu)y r*d¢>. (19.3)

A coordinate transformation ¢' = (1 - 4Gu )¢ brings the metric to a locally Minkowskian form, but now
the angle ¢’ changes from 0 to (1 —4Gu)2#. Thus, eq. (19.3) describes a “conical space”, that is, a flat
space with a wedge of angular size 87Gu taken out and the two faces of the wedge identified. In the
coordinates (¢, z, r, ¢') the geodesics are just straight lines, and we see immediately that a particle
initially at rest relative to the string will remain at rest and will not experience any gravitational
attraction.

Although the metric (19.3) is locally flat, its global structure is different from that of Minkowsky
space. The most striking effect of this difference is the formation of double images of objects located
behind the string [14]. This is illustrated in fig. 7. The light rays from the quasar intersect behind the
string and the observer sees two images of the quasar. If € and d are the distances from the string to the
quasar and to the observer, respectively, then the angular separation between the images is [15, 16]

3¢ = 87Gul(d + £)! (19.4)

assuming that Gu <1 and that the string is perpendicular to the line of sight.

Gravitational lensing by a string is a classical analogue of the Aharonov-Bohm effect [48].
Space-time curvature is confined to the string core, but its effect is “felt” by the photons propagating in
flat space-time region around it. As in the Aharonov-Bohm case, a Minkowskian coordinate system can
be chosen in any region on one side of the string, but such systems do not exist in regions surrounding
the string.

It should be emphasized that all this discussion applies only to portions of strings which can be
regarded as straight. A closed loop of size R produces a regular Schwarzschild field at distances> R.

The solution of Einstein’s equations for a plane domain wall with energy-momentum tensor

T = odiag(l,1,1,0) 8(z) (19.5)
OB%ERVER
QUASAR STRING
— ]|
f

OBSERVER

Fig. 7. The conical space around a straight string can be obtained from a Euclidean space by cutting out a wedge of angular size 87Gu and identifying the
exposed surfaces. Light rays emitted by the quasar intersect behind the string, and the observer sees two images of the same quasar.
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has been found in refs. [49, 50]:
ds?=(1-kzPdf-dz?— (1- kzf e*(dx*+dy?), (19.6)

where k =27 Go. Note that this solution is time-dependent: no static solutions with T} of the form
(19.5) exist. In the plane of the wall (z = 0) the metric is that of a (2+ 1)-dimensional de Sitter space,
while the (z, ¢) part of eq. (19.6) is the (1+ 1)-dimensional Rindler metric describing a flat space in the
frame of reference of a uniformly accelerated observer. An observer at z =0 will see test particles
moving away from the wall with acceleration a = k = 27Go, in agreement with the Newtonian analysis.

The metric (19.6) has an event horizon: an observer at z = 0 never sees particles and light cross the
surfaces z = =« ~'. On the other hand, it takes a finite proper time for a particle to reach |z} = . In
addition, usual de Sitter horizons of radius «~* exist in the (xy )-plane. The singularity at |z| =« is
not a true singularity of the metric. In fact, it can be shown that the metric (19.6) is locally flat
everywhere except on the wall itself.

Just like in the case of strings, it is important to realize that these results can be applied directly only
to plane domain walls. The gravitational field of curved, and especially closed walls can be very
different. For example, the gravitational field outside a collapsing spherical wall [50] is described by the

Schwarzschild metric.

20. Interaction with particles .

To analyze the cosmological evolution of topological defects, it is important to know the force of
friction experienced by moving walls and strings due to their interaction with particles.

A domain wall is transparent to some particles, but may be a nearly perfect reflector for some other
particles. The wall is formed when the temperature of the universe is T ~ 5, where (¢) = 75 is the VEV
of the corresponding scalar field. At later times, when T <1, the typical wavelength of the particles,
A ~ T, is much greater than the thickness of the wall, § ~ n™'; hence we can treat the wall as infinitely
thin. Consider a multiplet of fields ¢, such that the VEV of ¢ gives masses ~7 to some members of the
multiplet, other members remaining massless. In general, different components of ¢, will acquire
masses on the two sides of the wall (since the VEVs of ¢ are different). Everett has shown [51] that for
the components whose mass changes across the wall the probability of reflection is large (provided that
A>8).

We can now estimate the force of friction acting on a domain wall moving with velocity v relative to
the radiation. For simplicity we shall assume that the wall is not ultrarelativistic, so that (1 - v%)""*~1.
The density of particles per spin degree of freedom is n ~ 7~2T?, the average momentum transfer per
collision is ~ Tv, and we can write for the force per unit area of the wall [3]

F,~N,nTv~ 772N, T*v, (20.1)

where N, is the number of particle states changing their mass across the wall.

Scattering of particles on strings has been studied by Everett [S2]. He considered a particle multiplet
¥, with a mass matrix M?2,(6) changing around the string. Heavy fields of the multiplet have masses ~ 5
and are absent from the thermal bath at T <. Everett has found that the scattering cross-section of
light members of the multiplet per unit length of the string is given by
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a ~ mk In*(k8) (20.2)

and is practically insensitive to the internal structure of the string. Here, k is the momentum of the
particle (k ~ T) and § is the width of the string (8 ~ n~"). The force of friction per unit length of a
moving string is then [52]

F,~ N,T*u/n¥(Ts), (20.3)

where N, is the number of light particles interacting with the fields of the string.
Finally, to discuss the evolution of monopoles connected by strings, we shall need the force of
friction acting on a moving monopole. This is given by [10]

Fo~T?. (20.4)

4. Evolution of topological defects
21. Domain walls

In this section, we shall discuss the configuration of the domain walls at the time of formation and
their further cosmological evolution. The initial shape of the walls right after the phase transition is
determined by the random variation of the scalar VEV, (¢). Hence, one expects the walls to be very
irregular, random surfaces with a typical curvature radius ~¢, where ¢ is the correlation length of ().
To learn more about the system of walls at formation, one can use a Monte Carlo simulation [53, 54].

Take a cubic volume of size N¢ divided into N cubic cells and assign to each cell a number +1 or -1
[corresponding to (¢)=+7 in the model (4.1)] at random with equal probability. We shall call the
corresponding cells plus-cells and minus-cells, respectively. The walls lie on the boundaries between
plus- and minus-cells.

To characterize the system of domain walls, one can look for the size distribution of clusters of
connected plus-cells. (Two cells are connected if they have a common face; the size of a cluster is the
number of cells in the cluster.) Of course, the distribution of minus-cell clusters will be similar. This is a
typical problem of percolation theory [55), which is concerned with statistical properties of systems like
ours for various types of lattices at different concentrations of plus-cells, p. The central concept of
percolation theory is the critical concentration, p., at which an infinite plus-cluster first appears (in an
infinite lattice). The value of p. is different for different lattices, but in all 3-dimensional cases it is
smaller than 0.5. In our case, p = 0.5, and thus the system is above the percolation threshold. (For a
cubic lattice, p. = 0.31.)

The following facts are known about the properties of percolating systems at p > p.: (1) there is only
one infinite plus-cluster (and one infinite minus-cluster if p <1- p.) and (2) the number density of finite
clusters, n,, decreases exponentially with their size, s:

n, « 577 exp(—as??). (21.1)

Here, the numerical coefficients 7 and & depend on p.
The implications of these results for the system of domain walls are straightforward. The system is
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dominated by one infinite wall of very complicated topology [3]. In addition, there are some finite
closed walls. Most of them have dimensions R ~ £ The probability of finding closed walls with R > ¢
exponentially decreases with R, In n « —R?. In a typical simulation on a lattice of size N = 40, ~98% of
all plus-cells and ~87% of the total wall area belong to the “infinite” cluster [54].

Once it is formed, how will the system of walls evolve? Tension in convoluted walls, o, produces a
force per unit area f ~ o/R, where R is the mean curvature radius. As a result, isolated closed walls
smaller than the horizon (R <) will shrink and disappear. In vacuum, a collapsing closed wall would
develop kinetic energy and would keep oscillating, just like a loop of string discussed in section 12.
However, the motion of the walls is damped by the force of friction (20.1). Omitting numerical factors,
the retarding force per unit area is F, ~ T*v ~ v/ G, where I have used

T~ p~1/GP (1.2)

[see egs. (2.4), (2.8)). For sufficiently large walls the velocity v is determined by the balance between
tension and friction, f ~ F,:

v~ Got*/|R (21.3)
and the typical dissipation time is
ta~ R/v ~ R*/Got”. (21.9)

When the wall shrinks to R ~ Ga#?, its motion becomes relativistic, the energy loss rate is M ~-F,R%
and the energy of the wall is dissipated on a timescale M/|M|~ Got>. From eq. (21.4) we see that closed
walls of size smaller than

R(1)~ (Go)2P"? (21.5)

disappear in less than one Hubble time (¢). Similarly, it can be argued [3] that small-scale irregularities
of the infinite wall are damped out, so that the characteristic scale at time ¢ is given by (21.5). The scale
grows like £ and becomes comparable to the horizon at

te~(Go). 21.6)

The contribution of the walls to the energy density of the universe is p, ~ oR*/ R*>~ d/R, so that for
1 <tx,

pulp ~ ()2 (21.7)

At t ~ t«, py, ~ p and the universe becomes dominated by domain walls. For ¢ > ¢+, the curvature radius
of the walls is greater than (Go)™" and the metric near the walls is given by eq. (19.6). Space-time
becomes very inhomogeneous and develops horizons at distances ~(Go)™' from the walls. A domain
wall stretching across the present horizon would introduce a density fluctuation 3p/p ~ Gotpres ~
10%(n/m,)* and a comparable fluctuation in the temperature of the microwave background. Obser-
vations constrain 3777 to be 107 and thus models predicting topologically stable domain walls with
7 = 1072 GeV should be ruled out [9, 3].
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This rule is not without exceptions. If the formation of domain walls is followed by inflation, the
walls can be inflated away far beyond the present horizon.

As another example, consider the case when a discrete symmetry is broken at T= T; and then
restored at T = T,. An example of this sort was discussed at the end of section 9. In this case, the wall
tension changes with temperature [14]. Omitting numerical factors and coupling constants,

o~ T3, (21.8)
and eq. (21.7) gives
pulp ~ (t/6)" (21.9)

where #,~10"*s is the Planck time. Hence, in models of this type, the universe never becomes
wall-dominated.

Yet another possibility is to allow a small bias, so that one of the two vacuum states separated by the
walls has slightly smaller energy density than the other: Ap, =& #0 [9,3]. This is the case of an
approximate discrete symmetry. Regions of higher density vacuum tend to shrink, the corresponding
force per unit area of the.walls is ~¢. The energy difference A p becomes dynamically important when
this force becomes comparable to the force of tension, f~ o/R. For walls to disappear, this has to
happen before the walls dominate the universe, that is, for R <(Gg)™'. This requirement gives a lower
bound for the asymmetry ¢ [14]

£>Go>. (21.10)

22. Strings

At the time of formation, one expects strings to have the shape of random walks of step ~¢ with a
typical distance between the neighboring string segments also ~¢£. Here, £ is the correlation length of
the Higgs field ¢. The statistical properties of the system of strings at formation can be studied using a
Monte Carlo simulation. This has been done in ref. [54] using the following prescription.

The simulation is done having in mind the U(1) model (5.2) in which the Higgs VEV is (¢) = n €*.
The phase 6 is randomly assigned at the vertices of a cubic lattice. For simplicity the phase at the
vertices is allowed to take only three values: 0 = 0, 2#/3, 47/3 (assuming that @ varies smoothly between
the vertices). The size of the cubic cell is identified with the correlation length £. A string passes through
the face of a cubic cell if 6 changes by 27 when traced around the face. It can be checked that the
construction is such that all strings are either closed or end at the boundaries of the lattice.

As expected, one finds [54] that long strings are Brownian, so that the length of string between two
points separated by a distance R > £ is

¢~ RY¢. 22.1)

Results of the simulation for various sizes of the lattice indicate that a large fraction (~80%) of the total
string length is due to infinite strings. The remaining strings are closed loops with a scale-invariant
distribution
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dn~R™“dR. 22.2)

Here, R is the characteristic size of the loop defined as R = AX;+AX,+AX;, where AX; are the
extents of the loop along the corresponding axes. The length of the loop is related to R by eq. (22.1). dn
is the number of loops with sizes from R to R +dR per unit volume.

We now turn to the evolution of the system of strings [3, 12, 38, 45, 54, 56, 57]. At very early times
the motion of strings is heavily damped by the force of friction (20.3). For a rough estimate we can omit
the numerical and logarithmic factors in eq. (20.3) and write

F,~ T%. (22.3)

Tension in convoluted strings produces a force per unit length f ~ /R, where p ~ n? is the linear mass
density (and tension) and R is the local curvature radius of the string. The velocity of the string is
determined by f~ F;:

v~u/T°R. (22.4)

(I am using Newtonian physics assuming R < t.) Small-scale irregularities on the strings are damped out
by friction, and the typical curvature radius of strings at time ¢ is R(¢) ~ vt. Substituting this in eq. (22.4)
and using eq. (21.2) we obtain

R()~ (Gu)"? (4/1,)"* ¢. | (22.5)

Closed loops of size smaller than R(¢) shrink and disappear in less than one expansion time.
R(?) becomes comparable to the horizon at

te~(Gu)2t,. (22.6)

For t> t« the characteristic scale of the strings is R(f)~ t. [Strings cannot be smoothed out on scales
greater than ¢, since that would require superluminal velocities.] The force of tension is now f ~ u/t and
the force of friction is F, ~ (u/t) (#/¢+)~ 2. Hence, for t > t« the effects of friction become negligible. For
a typical grand unified value 5 ~ 10" GeV we have Gu ~107¢ and t+ ~ 107*'s.

Expansion of the universe straightens out long strings on scales smaller than the horizon (so that the
persistence length of Brownian strings is ~¢) and conformally stretches them on scales greater than the
horizon. It has been shown in section 16 that the overall effect of expansion on large Brownian loops in
a radiation-dominated universe is that the length (and therefore the mass) of the loop remains roughly
constant. Similarly, it can be argued that the co-moving mass of infinite strings remains unchanged. This
seems to indicate that the mass density of string scales like p, « a™>, while the radiation density is
p « a~* Hence, p,/p « t'* and the universe becomes string-dominated. This, however, is not our final
conclusion, since two important physical effects are still to be taken into account. These are intercom-
muting and gravitational radiation.

Pairs of strings intercommuting at two points can form closed loops. Loops can also be formed by
self-intersection of individual strings (see fig. 8). These processes are important, since loops eventually
radiate away their energy and save the universe from string domination. ‘

Let »(r) be the typical number of segments of infinite strings (or very large closed loops) per horizon
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Fig. 8. Closed loop formation by intercommuting strings.

volume ~*. Then the density due to infinite strings is i~ vut > and each segment has about v
intersections per Hubble time. (At ¢ > ¢+ strings move with relativistic speeds, v ~ 1.) The total number
of intersections in a volume #* per time interval d¢ is ~»* t~* d¢ and the rate of loop formation per unit
volume is

dn/dt ~ pr2t*. (22.7)

Here, p is the probability of loop formation per intersection (it is, of course, related to the intercom-
muting probability). The typical curvature radius of strings at time ¢ is ~# and we expect that loops
formed by their intercommuting will have size ~¢. Then, by energy conservation, we must have

dpinf+i o tgﬁ
dr P TR

(22.8)

The second term on the left-hand side describes the dilution effect due to expansion, a « ¢2. This
equation does not take account of the effect inverse to the loop formation. If a segment of string
intercommutes at one point with a closed loop, the loop gets absorbed into the segment. A more
detailed analysis done by Kibble [56] indicates that inclusion of this effect does not change the
qualitative conclusions. The reason is that the probability for a loop smaller than the horizon to be hit
by a string rapidly decreases with time, and a large fraction of loops survive.

From egs. (22.7) and (22.8) we obtain the following ‘kinetic” equation for v(t):

dv/dt — v/2t ~ —pv?t. (22.9)

We see that v tends to decrease if »> p™' and tends to increase if v <p~". Thus, v~ p~' is a stable
solution.
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With intercommuting probability ~1, it is natural to assume that p ~ 1. Then there are no more than
a few segments of infinite strings per horizon volume at any time [3], and eq. (22.7) tells us that about
one loop of size ~ is formed per horizon volume per Hubble time [12].

The density due to infinite strings is pins ~ u/¢* and, using eq. (3.8),

Pintlp~30Gpu. (22.10)

Let us now see what happens to the closed loops.
Loops of size R are formed at ¢t~ R. At that time, the number density of loops is (assuming
p~v~1lineq.(22.7)

dn(t~R)~R™dR. (22.11)
It is convenient to introduce the quantity
ne = R dn/dR @)

which gives the number density of loops with sizes ~R in the interval AR ~ R. Then eq. (22.11) gives
ng(t ~ R)~ R>. At later times the loops are just diluted by the expansion:

nr()~[a(R)a(t)P R>. (22.13)
During the radiation era, a(f) x £ and
ng()~ (IR) 2. (22.14)
The loops lose their energy by gravitational radiation and disappear with a typical lifetime
T~ R/yGu, (22.15)

where vy is a numerical coefficient ~100 (see section 14). Hence, the loops surviving at time ¢ have
(initial) sizes greater than yGut. All smaller loops have already decayed. The mass density of loops at
time ¢ is

t

dR
o~ [ uRna) S~y (Guy? (G (22.16)

yGut
and, using eq. (3.8)
pulp~30 Y12 (G)? ~ (Gu)'™. (22.17)

The dominant contribution to p; is given by the smallest loops with R ~ yGut, which are about to
decay. [In fact, the cut-off of the distribution (22.14) at R ~ yGut is not sharp. It is easily understood
that, for R < yGut, ng is proportional to R, and thus ng(#) has a maximum at R ~ yGut.]
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For closed loops formed during the matter-dominated era, a « 2, eq. (22.13) gives
ne(f)~ (PR)™ (22.18)
and we find, using eq. (3.12),

pulp~6mGun(yGu)™'. (22.19)

The total mass density of strings is p, = pine+ pL. From egs. (22.10), (22.17), (22.19) and (14.3) it follows
that p,/p <1 and the strings never dominate the universe. Unlike domain walls, strings do not cause
cosmological trouble. In the following sections, we will see that strings can play a useful role in galaxy
formation and can even produce some observable effects at present.

It should be noted that, in discussing the closed loops, I assumed that a large fraction of them is of
non-self-intersecting variety. This is suggested by the results of Kibble and Turok [40] and Turok [39].
However, their results apply only to local strings. The motion of global string loops is not periodic, and
they may frequently self-intersect (see section 17). In such a case, the lifetime of the loops will be short,
and their contribution to the mass density will not be much different from that of infinite strings, so that
ps/p ~ 30 G u. [If, as suggested in section 17, global strings self-intersect on a timescale 7~ 100 R, then
we obtain p/p ~ 300 G u.]

Finally, it should be mentioned that the evolution of Z, strings with n>2 (see section 6) may be
different from that described in this section. Such strings can form vertices where several strings join,
and it appears that under the action of string tension, the vertices can reach equilibrium positions, so
that the whole network will “freeze” with strings being stretched between the vertices by the expansion.
In this case, the co-moving mass of strings will grow like a(f) and the universe will eventually become
string-dominated. The same conclusion applies to the case of non-commuting strings with a non-Abelian
m1(M). For more discussion of a string-dominated universe, see section 28.

23. Walls bounded by strings

Walls bounded by strings are formed in two steps. Strings form at an earlier phase transition and
evolve as discussed in the previous section. A later phase transition gives rise to walls which are
bounded by strings, together with some closed walls. A numerical simulation of these phase transitions
has been done in ref. [54] assuming that walls are formed soon after the string formation, so that the
two correlation lengths are comparable. The results suggest that the system is dominated by one infinite
cluster comprising about 9% of the total wall area and string perimeter. This cluster has a very
complicated topology and is very “holey”, so that its intersection with a plane gives a large number of
short pieces. Some finite walls bounded by strings are also formed in numbers decreasing with their size.
Closed domain walls are very rare. If the walls are formed much later than the strings, one has to take
into account dynamical effects of the string evolution on scales smaller than the horizon. However, one
expects that the results of ref. [54] still correctly represent the large-scale structure of the system.

The cosmological evolution of walls bounded by strings has been discussed in refs. [4-6]. Let 1 and o
be the string and wall tensions, respectively. The force of tension in a string of curvature radius R,
f~ wu/R, is greater than the wall tension, o, for R < u/o. Therefore, at ¢t <pu/o the evolution of strings
will not be qualitatively different from that described in the previous section.
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Walls are formed at t, ~ m,/n2, which is earlier than u/o ~ n2/93 if 5, > (myn.)"?. For definiteness,
I shall assume that this is the case. (Here, 7, and 7,, are the symmetry breaking scales corresponding to
strings and walls, respectively, and I have omitted the coupling constant factor in ¢.) Using eq. (22.6), it
is easily checked that with this assumption friction of strings becomes unimportant at t« <pu/o. For
simplicity, we shall consider the case when the force of friction acting on domain walls is also negligible.
This is so for axion models [5], both because the thickness of the wall is much greater than the thermal
wavelength of the particles [51] and because the vacua on the two sides of the wall are identical, and
particles do not change their masses across the wall (see section 20). The case where the wall friction is
important is discussed in refs. [4, 6] with similar conclusions.

At t > ujo the typical curvature radius of the strings becomes greater than x/o, and the wall tension
becomes dynamically important. Domain walls will tend to shrink pulling the strings toward one
another, and the holes in the walls will increase in size. (This only applies to the holes of size greater
than u/o. Smaller holes will tend to shrink and disappear.) The strings will frequently intersect and
intercommute; as a result the wall connecting the strings is rapidly cut into pieces of size not much
exceeding u/o. (I assume that the intercommuting probability is p ~ 1.)

A piece of wall of size R > u/o oscillates at a typical frequency w ~ R™" and loses its energy by
gravitational radiation at a rate

M ~-GM?*R*0® ~ —GoM. (23.1)
The lifetime of the piece is independent of its size,
7~ MJ|M|~ (Go)™*. (23.2)

When the piece shrinks to a size smaller than u/o, its mass is determined mostly by the string, and the
decay time is [see eq. (14.2)]

7~ R/Gu <(Go)™ .' ' (23.3)

The lifetime of the pieces can be smaller if they decay as a result of multiple self-intersections.

We see that, assuming a large intercommuting probability, the whole system decays no later than
7~ (Go)™". The ratio of the mass density of walls and strings to the total density of the universe never
exceeds

) ) oo o

and thus the vacuum structures never dominate the universe.

The situation is changed if there is a period of inflation between the two phase transitions. Inflation
can push the strings out to arbitrarily large scales; then the evolution of walls will proceed as discussed
in section 21. It is conceivable that, after a “mild” inflation, the scale of strings is such that the walls are
cut in pieces just when they are about to dominate the universe. The sizes of the pieces will then be
comparable to their Schwarzschild radii, and a large number of black holes of mass ~(G? )" can be
formed. This sort of scenario has been discussed in ref. [64].
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24. Monopoles connected by strings

Consider a model of the type (9.1), in which monopoles form at T ~ 5,, and then get connected by
strings at T ~ 7, < nv. One might expect the distribution of monopoles and antimonopoles at formation
to be random, with usual V' N fluctuations of the magnetic charge:

SN~ N2~ (L/&w)*?. 24.1)

Here, N =N, + N_~(L/¢w)’ is the total number of monopoles and antimonopoles in a volume L3,
3N = N, - N_ is the magnetic charge fluctuation, and & is the correlation length. However, this
expectation is wrong: positions of monopoles and antimonopoles at formation are strongly correlated
[58]. To see this, note that the total magnetic charge inside a volume can be expressed as a surface
integral over the boundary of the volume, where the integrand depends on the direction of the Higgs
field at the boundary. For example, in the O(3) model of ref. [31]

1 y
dN= . § |$172 € ape D° 0:0° 9;0° dSY, (24.2)

where ¢“ is the Higgs field and dS” is the surface element. The integrand is ~ £ and varies randomly
on scales ~&y; hence

SN ~ Liéy . (24.3)

We see that 3N goes like a square root of the surface area, not of the volume. In this sense the
magnetic charge fluctuation (24.3) is just a surface effect, and there are no real volume charge
fluctuations in the system [59].

Let us now turn to the second phase transition when the strings are formed. Assuming that no
substantial monopole annihilation has occurred [10], the typical distance between the monopoles at that
time is do~ (nm/ms)ém. If both phase transitions are second-order, then &y~ 73, &~ 75, and the
string correlation length, &, is comparable to the average monopole separation, do. (If one or both
transitions are first-order, £ can be smaller or greater than d,.) Most of the monopole-antimonopole
pairs will be connected by the shortest possible strings of length ~d,. Some longer strings and closed
loops should also be present, and the length distribution of strings can be found using a Monte Carlo
simulation. A 3-dimensional simulation for this system is rather complicated and has not yet been done,
while 2-dimensional simulations give [54, 60, 61]:

ne « exp(-af/do), (24.4)

where a ~ 1 is a numerical factor. The exponential character of the distribution can be understood if we
note that, as we go along a string, at each step there is a certain probability of getting the combination
of phases corresponding to a monopole and terminating the string [62].

Even if the initial distribution of strings is not like (24.4), an exponential length distribution will be
rapidly established as a result of intercommuting processes [7]. Long strings will be chopped into short
pieces by intercommutings with much more numerous shorter strings (see fig. 9). The probability for a
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> D

Fig. 9. Long strings are cut in small pieces by intercommuting with much more numerous shorter strings.

string of length ¢ to avoid intercommuting (per given time) is an exponentially decreasing function of ¢,
and thus strings much longer than d, will be exponentially suppressed.

The cosmological evolution of monopoles connected by strings has been discussed in refs. [7, 8].
When low-energy monopole and antimonopole get sufficiently close to one another, they rapidly
annihilate [10]. The lifetime of a pair connected by a string is, therefore, determined by the time it takes
to dissipate the energy of the string. The strings pull the monopoles with a force f~ p ~ 52, while the
force of friction acting on a monopole is [see eq. (20.4)] Fy~ T?v. At T <9, F,<f and friction is
negligible. In general, monopoles have unconfined non-Abelian magnetic charges, and the dominant
energy loss mechanism is the radiation of gauge quanta [7]. The classical dipole radiation formula gives

é~—g W2~ —(ulgmy, (24.5)

where g is the gauge coupling, W = u/m is the monopole acceleration and m ~ ny/g is its mass. The
lifetime of a pair connected by a string of length ¢ is

T~ (nm/nefE. (24.6)

It follows from (24.4) and (24.6) that the monopole density will decrease exponentially with time.

A somewhat different situation is obtained in Langacker-Pi-type models, where the string tension is
p ~ T? (see section 9). In this case, we find from eq. (22.5) that the persistence length of strings at time ¢
is

R(@)~ (t/t)"* ¢ (24.7)

and never becomes comparable to the horizon size. Monopoles and antimonopoles are pulled together
by the strings with a typical velocity v which can be found from v*~ (T?/m) R(¢). This gives

v(t) ~ (myo/m) (t,/0)"*. (24.8)

[Equation (24.8) applies only for ¢ > (m,/m)* t, when v < 1. At earlier times, the velocity of monopoles
is determined by the balance of tension u ~ T2 and friction f ~ T2y, which gives » ~ 1.] All MM pairs
connected by strings much shorter than v(¢) ¢ annihilate in less than one Hubble time.

If the strings disappear at temperature T; < T, then assuming that monopole and string phase transitions
are both second order and using eq. (24.4) we find that (for T < Tp)

B expf—ar T (7))
" exp{ @'~ ( T2 . (24.9)



304 A. Vilenkin, Cosmic strings and domain walls

Here, ny and n, are monopole and photon number densities, respectively, and a’ is a numerical
coefficient.

The evolution of monopoles connected by strings is different if there is a period of inflation between
the two phase transitions (or if the monopole-forming phase transition is itself inflationary). In
particular, if the monopoles are pushed beyond the present horizon, the evolution of strings is identical
to that of topologically stable strings (section 22).

Finally, I should mention that some doubts have been raised about whether efficient monopole
annihilation is consistent with causality. The argument is [63] that the magnetic charge fluctuations
(24.3) cannot be erased on a timescale shorter than ¢~ L. I think this argument is incorrect for several
reasons. As explained above, there are no volume charge fluctuations in the system. The fluctuation
(24.3) is just a surface effect which can be erased by a slight reshuffling of monopoles near the surface.
But my main objection is given by the dynamical mechanism for monopole annihilation described
above. As long as a physical mechanism does not require superluminal velocities, its efficiency is a
dynamical question and is not constrained by any causality principles. For more discussion of this issue
see refs. [59, 61, 63).

5. Cosmological effects of strings
25. Galaxy formation: Basic facts

Galaxies and clusters of galaxies have evolved by gravitational instability from small density
fluctuations. The origin of the initial fluctuations is one of the major unresolved cosmological problems.
Some density fluctuations can be produced at a phase transition in the early universe. However, it can
be shown [11, 65] that physical processes at cosmic time ¢ cannot produce substantial fluctuations on
scales much greater than ¢. Phase transitions are expected to occur at ¢ <10™s, and thus cannot explain
density fluctuations on scales greater than a few parsec.

Two ways around this difficulty have been suggested. In inflationary scenario [23] all presently
observable universe had initial size smaller than the horizon, and thus the horizon problem is avoided.
Density fluctuations in this scenario are due to the quantum fluctuations of the Higgs field. An
alternative possibility is that the density fluctuations are produced by strings [11, 12]. On scales greater
than the horizon the density fluctuations due to strings are balanced by the corresponding variations in
matter and radiation density. (On such scales the fluctuations are in the equation of state; density
fluctuations of comparable magnitude can only be produced when the corresponding scale comes within
the horizon [11, 65].) Rapidly moving open strings and oscillating closed loops produce density
fluctuations on scales smaller than the horizon, so that the fluctuation-generating process continues for
all times, extending to larger and larger scales. The string scenario of galaxy formation is discussed in
the next section. Here we shall review some well-known results of the galaxy formation theory.

The evolution of density fluctuations is determined by two major effects: gravitational instability and
dissipation. In discussing the gravitational aspects of the evolution, we shall use the following result of
the linear perturbation theory [65).

Density fluctuation on a co-moving scale ¢(¢) grows like

dplpxa(®)ec(1+2)™ (25.1)
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when €(f) becomes greater than the Jeans length,
Ay = (m%/G p)? ~ 1004t (25.2)

where v, is the sound velocity. When €(f) < A, 3 p/p remains constant.

Comments: (i) This statement applies only to fluctuations on scales smaller than the horizon, but this
is exactly the case we are interested in. (ii) In an open universe with {2 <1 the growth of density
fluctuations stops at z ~ 2. (iii) In a universe filled with two (or more) uncoupled components (say,
radiation and axions), A; should be calculated for the component dominating the mass density*. (iv)
Instead of the Jeans length A; it is often convenient to use the Jeans mass, which can be defined as the
mass contained in a sphere of diameter A;:

M; = (4713) p(As/2)° . (25.3)

During the radiation era, ¢ <., the sound velocity is v,~ 1 and the Jeans length is A; ~ ¢. Hence, the
density fluctuations produced by strings can start growing only at ¢>f.,. The evolution at ¢ > ¢, is
different for different types of dark matter dominating the universe, and we shall consider various cases
separately.

(a) Baryon-dominated universe. Before decoupling, ¢ < t,.., baryons are coupled to radiation, so that
v;~1 and A;~ t. Thus, the density fluctuations start growing at ¢~ max (f.q, f4.c). The discussion is
simplified if we note that egs. (2.17) and (2.18) require that £~ 0.1 in a baryon-dominated universe.
For this value of {2 and h ~ 1, it follows from eqs. (2.22) and (2.24) that z., is not much different from
Laccs loq™ laec- At I~ 14 the sound velocity drops sharply from v,~1 to the thermal velocity of hot
hydrogen gas, v,~ 107>, and the density fluctuations start growing on all scales of cosmological interest.
An important dissipational effect in a baryon-dominated universe is the Silk damping: adiabatic density
fluctuations are erased by photon viscosity on all mass scales smaller than

Msﬂk -~ 1012 (.0 h2)—2 M@ . (25.4)

(b) Neutrino-dominated universe [66). For simplicity we shall assume that only one of the 3 neutrino
species has a Majorana mass m, # 0. If the universe is dominated by these massive neutrinos, then

Qh?=03ms, 255)

and z., = 10* mo, where ms = m,/30 eV. Neutrinos become nonrelativistic at z ~ z.,, and for z < z.,
their mean square velocity is

v=6X10°m3(1+2)cm/s. (25.6)
The sound velocity is v, = 37"?v and the Jeans mass is

M;=13x10° (1 + 2)**m3*Mo
= MJ,eq[(l + Z)/(l + zeq) 32 ’ (25.7)

* Independent fluctuations in the subdominant components can grow only logarithmically, and we shall disregard this effect here.
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where Mo = 1.3X 10" m35 My~ Mc,. Here, M., is the mass within a sphere of diameter ¢ at ¢ = 1.,
M., =2Xx10" m3¢ Mo. In what follows we shall make no distinction between M 1eq and M.,
Perturbations on mass scales M < M, start growing at z = z,,, when the Jeans mass M; drops down to
M:

1+ 25 = (MIM?? (14 2.) . (25.8)

Neutrinos are non-interacting particles and erase their own density fluctuations on scales smaller than
M, by freely streaming out of overdensed regions. (For this reason, in scenarios with a primordial
spectrum of adiabatic fluctuations, the density fluctuations survive only on scales greater than the
maximum Jeans mass, M jma ~ Meq.)

(c) Axion-dominated universe. Axions are cold particles with thermal velocity very close to zero.
They are not coupled to radiation, and perturbations in axions start growing at ¢~ f.,. There are no
effective damping mechanism, and so the small-scale density fluctuations are not erased.

26. Strings and galaxy formation

In this section we shall find the spectra of density fluctuations generated by strings in various
scenarios.

If one assumes that closed loops rapidly decay as a result of multiple intercommutings (which may be
the case for global strings), then the density fluctuations produced on each scale at horizon crossing are
of the order (8 0/p Jnor ~ Pins/p, Where piy is the density due to infinite strings (see section 22). This gives

[11]
®plp)her~AGu, (26.1)

where A ~ 30 and A ~ 67 for scales coming within the horizon at ¢ <t and ¢ > t.4, respectively. This
is the well-known scale-invariant (Zel’dovich) spectrum. The cosmological evolution of such a spectrum
has been extensively discussed in the literature. Reasonable galaxy formation scenarios are obtained for
(8p/p Ynor ~ 107*-107°. This corresponds to Gu ~107° and gives 5 ~ 10 GeV for local strings and
n ~ 10" GeV for global strings. It is encouraging that the required value of 5 falls in the grand
unification range.

A distinctive feature of the string scenario is the formation of planar wakes behind relativistically
moving strings [20]. The wake formed behind a straight string has the shape of a wedge with an opening
angle ~8 m# G u (assuming that the velocity of the string is v ~ 1 and that the thermal velocity of the
particles is smaller than 4 7 G ). The wake formation is due to the conical nature of space around the
string (see section 19) and in this sense is a purely kinematic effect. The density contrast in the wake is
dp/p ~ 1, its length is ~¢ and its mass is comparable to that of the string: M, ~87Gudp~put.
Particles enter the wake with a transverse velocity v, ~ 4 7 G u. The gravitational acceleration in the
field of the wake is g ~2 G M,,/#, and collisionless particles (like axions) do not escape much further
than the width of the wake: vZ/2g ~ 4 m G u t. Baryons will lose their transverse velocity in a shock and
will stay confined within the width of the wake. Wakes formed behind rapidly moving strings can help
to explain the observed large-scale structure in models with cold dark matter (axions).

We now turn to the scenario in which loops have long lifetimes,
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r~RlyGu, (26.2)

where y ~ 100 (see section 14). In this case galaxies and clusters condense around oscillating closed
loops, while the loops gradually decay by gravitational radiation [12]. Although at present many
properties of the loops can only be estimated in order-of-magnitude sense, it may be useful for future
applications to be reasonably precise in normalization of certain quantities. We shall assume that the
rate of loop formation is

dn/dt ~ t* (26.3)
[compare with (22.7)] and that the typical length of loops formed at time ¢ is
R~ at. (26.4)

Note that here and below R stands for the length of the loops. Parameters @ and B can be determined
by a computer simulation of the evolution of strings. Here we shall assume that both « and 8 are not
very different from 1.

Since the density fluctuations produced by strings cannot grow at ¢ <., one can start by calculating
dp/p at t~ t.. Like in section 22, we find the number density of loops at £.:

ne(tes) ~ Ba*? (R t.y) ™2, (26.5)
where
yGuta<Rsat,. (26.6)

Consider the density fluctuation on a scale €< t.,. A volume ~ ¢* will typically contain Ng ~ ngf®
loops of size R. The mass fluctuation induced by such loops is

SM~NY uR xR, (26.7)

This shows that the main contribution to 8M is given by the largest loop in the volume, that is, by the
loop of size R such that Ng ~ 1:

R~aB?t,. (26.8)
The corresponding density fluctuation is p ~ uR/¢* ~ a B** u/¢1., and
(30/p)ea~30a B PG t.g/€~30 a B Gu(MIM.y >. (26.9)
Here, M(M.,) is the mass of matter within a sphere of diameter ¢ (f.,). For 3 species of massless
neutrinos (N, = 3), M, =5.5% 10" (24?2 M.
Equation (26.9) applies for M; < M < M,, where

M, ~ B (Ve (Guy"Mey, My~ B 7'M, (26.10)
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Loops on scales M < M, have decayed at ¢ <., while loops on scale M > M, will form at ¢> ¢.,. For
M <M, density fluctuations do not grow between the loop decay and f., Assuming that the
fluctuations are not damped out, it is easily shown that on such scales

®plp)ea~30a® By (G ). (26.11)

Fluctuations on scales M > M, are generated at f, ~ 38 G M. The magnitude of the fluctuations at
that time is 8p/p ~ 6 ma B G 1. At later times 3 p/p grows like (1+ z)™! and we can write

dplp~6maBGu () ~6maB' Gu (MIM.) 1+ z.)/(1+ 2). (26.12)

The evolution of fluctuations for M < M, is different for different types of dark matter dominating the
universe, and we shall consider various cases separately [13].

(@) Baryon-dominated universe. Density fluctuations produced by the loops which decayed before
lgec ~ toq are erased by Silk damping. At ¢~ fs.~ f.q baryons pick up the fluctuations produced by
surviving loops, and at later times

8plp ~ (3plp)ea(1+ 2e0)/(1+ 2) (26.13)

for My <M < M,

Statistical analysis of galaxy distribution suggests [65] that the maximum scale that has gone
nonlinear at present is ~8 h~' M,., which corresponds to M,,~ 6x 10" 2h™" M. To normalize the
spectrum of fluctuations, we shall require that d8p/p~1 for M~M,, at z~2"'. (2~0.1 in a
baryon-dominated universe.) This determines the value of G p:

Gu~4x10a 8723 h)". (26.14)
The resulting spectrum of fluctuations is shown in fig. 10 for 2 ~0.1, « ~ 8~ h ~ 1 and y ~ 100. This

spectrum corresponds to the gravitational clustering picture: the fluctuations increase towards smaller
scales*. The lower cut-off of the spectrum is at M, ~ 10'> M, It gives the mass of the first objects to be

log (3p/p)
o -
-
N,
_2 -
-4}
L M
10 15 20 '°9°m,

Fig. 10. The spectrum of density fluctuations in (solid curve) neutrino-, (dashed curve) baryon-, and (dashed-dotted curve) axion-dominated universe.
The scale of 8p/p is arbitrary.

* An abrupt change of slope of 8p/p at M = My, M, is, of course, an artifact of our approximations. A more accurate analysis should give
smooth transitions between different regimes.
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formed. Interestingly enough, M, is the typical mass of a large galaxy. In this scenario galaxies start
forming at z ~ 40.

(b) Neutrino-dominated universe. Neutrinos erase their density fluctuations on scales smaller than
their Jeans mass, M < M;, but when M, drops down to M, they pick up the fluctuations produced by
surviving loops. Hence, we can write

30lp~ (Bp/p)ea(l+ zm)I(1+ 2) x M2, (26.15)
where 2y is given by eq. (25.8). Equation (26.15) applies for M, <M < M,, where
M, ~ =% B~5(y G u ) M., . (26.16)

Loops on scales M < M, decay at z > zp.. For M > M, the spectrum is given by eq. (26.12).
The spectrum we have obtained has a maximum at M ~ M,, which is the first scale to go nonlinear in
this model. Requiring that at present 8p/p ~ 1 for M ~ M,,, we obtain

Gu~4x10°a™ g3, (26.17)

Figure 10 shows the spectrum of density fluctuations for 2 ~h ~a~f~1 and y ~ 100. In this case
m, ~ 100 eV, M,~ M_, ~ 10"*M,, and M, ~ 10"*M,,. Pancakes of mass ~M,, collapse at z ~ 1. In our
model (unlike the standard pancake scenario) the pancake fragmentation is helped along by the
presence of perturbations on scales M, <M <M,,. Note that M, has the order-of-magnitude of a
typical galactic mass.

(c) Axion-dominated universe. In the axion-dominated case perturbations on all scales start growing
at ¢ ~ t.q. There are no efficient damping mechanisms, and the fluctuations on scales M < M, are given
by eq. (26.13), where (3p/p).q is given by (26.9) and (26.11) for M > M; and M <M, respectively.
Figure 10 shows the spectrum of fluctuations for 2~ h ~a ~ B~ 1 and y ~100. Like in the baryon-
dominated case, this spectrum corresponds to the gravitational clustering picture. Baryons pick up the
axion density fluctuations at £ > t,..

The analysis of this section shows that strings of a typical grand. unification mass scale can lead to
reasonable scenarios for galaxy formation in a universe dominated either by baryons, neutrinos or
axions. In fact, the string model has some advantages in all three cases, compared to the standard
scenario with adiabatic fluctuations. A detailed discussion of galaxy formation scenarios is beyond the
scope of this review, and I will only mention the relevant points.

(i) Density fluctuations produced by strings are not in the form of waves with random phases; this
can explain the observed deviations from the Gaussian behavior. For example, rare supergiant loops
can produce localized regions of density contrast much greater than one would expect from Gaussian
fluctuations [20]. Occasional splitting of loops can help to explain the observed cluster—cluster cor-
relations [67].

(ii) Closed loops have sizes much smaller than those of the galaxies condensing around them. A loop
representing a small density fluctuation on the galactic scale produces a large density contrast in its
immediate vicinity. This results in accretion of matter onto the loops and formation of massive compact
objects, which can be identified with quasars and active galactic nuclei [20,21]. Early formation of
quasars can reionize the universe, smoothing out small-scale temperature fluctuations, and thus resolve
one of the difficulties of the baryon-dominated scenario. It can also explain the existence of quasars at
z ~ 1 in neutrino-dominated model, which requires the pancake collapse at z <0.5.
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(iif) The galactic mass ~10"M, naturally arises as a cut-off of the spectrum in baryon- and
neutrino-dominated cases.

(iv) Finally, wakes formed behind long, rapidly moving strings can help to explain the observed
large-scale structure in the axion-dominated case.

It should be noted that the string scenario of galaxy formation assumes that the universe is initially
homogeneous and isotropic on scales much greater than the horizon. Such initial conditions can be
explained if we assume that there was a period of inflation before the string formation. An example of a
grand unified model which gives both a satisfactory inflationary scenario and strings of required energy
scale is given in ref. [30].

27. Observational effects of strings

If strings indeed cause the galaxy formation, they should also produce a number of unique
observational side effects. Some of these effects will soon be within the experimental limits, which will
allow to rule out or confirm the string scenario. Even if strings have nothing to do with galaxies, their
detection would, of course, be extremely interesting. However, it appears that strings with Gu <107°
will be very difficult to observe. In this section I shall briefly discuss various observational effects of
strings. For more details the reader is referred to the original literature.

Gravitational waves emitted by oscillating loops add up to a stochastic gravitational wave back-
ground. Loops of size R radiate at frequencies w ~ R™"; after the waves are emitted, their frequency is
red shifted like w « (1+ z). Presently surviving loops have extremely low frequencies, and the flux they
produce is well below the observational capabilities [39, 68]. With G u ~ 1075, waves which now have
periods less than 10° years correspond to loops that formed and decayed during the radiation era.

A convenient measure of the intensity of the radiation is

0,(0) = 3%”—‘ . @7.1)
p. dw

Here p, is the energy density of the gravitational waves and p. is the critical density. {2,(w) gives the
energy density in units of p. per logarithmic frequency interval.

Loops decaying at time ~¢ during the radiation era (#<ft.,) have size¢ R~yGu¢ and produce
gravitational waves of frequency ~R ™" and energy density

pe~ iR~ a®® By (G ) (G A) ™, 272)

where a and 8 are the parameters introduced in the previous section. Since p; redshifts in the same way
as the radiation density p,, we can write [18]*

2i(w)~30 ¥ By HGp)" O, (27.3)

where £2, = p,/p.=2%107h"% With Gu ~ 107, a ~ B ~ 1 and y ~ 100 this gives

* Two effects not taken into account in eq. (27.3) are: (i) radiation of a single loop is spread over a range of frequencies (see section 14) and (ii)
as the loop decays, its frequency gradually changes. A more careful estimation [41] does not change the order of magnitude in (27.3).
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Q(w)~ 10782, (27.4)

This equation applies for waves with present frequencies @ =(1+2eq)", (YGputed) '~
4% 107* 2 h?yrs~'. The spectrum at smaller frequencies is discussed in refs. [18, 19].

Recent observations of the millisecond pulsar imply [19] that £, <107° for gravitational waves with
periods ~1 year. However, the accuracy grows rapidly with the time of observation, and £2,~ 1077 will
probably become detectable within several years.

If the loops rapidly deteriorate because of self-intercommutings, the energy density of gravitational
waves is very small ({2, is proportional to (G 1 )* [18]). In this case most of the loop energy goes into
ultrarelativistic particles. The typical energy of the decay products is

e~n(l-f", (27.5)

where n is given by eq. (13.3) and f is the fraction of loop energy that goes into kinetic energy of
daughter loops. For the sake of illustration take f=0.5. (With this choice the equations considerably
simplify, but this value of f is probably too large.) Then the loops decaying at time ¢ produce particles of
energy

& ~n(n )2~ my(Guy*(tt,)"”, (27.6)

where #, ~ 1075 is the Planck time and m,~ 10" GeV is the Planck mass. With G u ~ 107°, particles
being produced at present have energies ~ 10* GeV! Nongravitational interactions of such particles are
extremely weak. The cross-section for scattering on photons of the microwave background is o ~
ake2~ a%/eT, where e.m ~ (¢T)'? is the center-of-mass energy, T is the temperature and ag is the
gauge coupling squared. The typical interaction time is

7, ~(n,0) ' ~ elabT*~ 0, (e/m)t> ¢, (27.7)

where n,~ T> is the photon number density. The gravitational interaction cross-section is o,~
(Gem) ~ € T/m} and the interaction time is 7,~ £27'(my/e)(4/t,)t > t. Eventually the particles are
slowed down by expansion to energies <m,. Then 7, becomes less than the Hubble time, the particles
lose the remaining energy by pair production, and the pairs lose most of their energy by inverse
Compton scattering [19]. Pairs being produced today are due to the loops that decayed at £~ 107"%s.
The resulting y-ray spectrum peaks at m2/T ~ 10° GeV. However, the initial energy of the loops is red
shifted by a factor ~ {2, compared to that of matter, and so

Qg ~30G 2, ~107°. (27.8)

This value is consistent with observational constraints, {2,.,, <1077. (Here I disagree with the con-
clusion of ref. [19], where the redshift effect is not taken into account.) Note that, although most of the
numerical values in this discussion are very sensitive to the assumed value of f, the estimate (27.8) is not.

Another observational prediction of the string scenario is the formation of double images of objects
located behind the strings [14]. The typical separation between the images is

§~47Gpu (27.9)
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(see section 19). With G u ~ 107°-1077 this gives 8 ~ 3-30 arc sec. The probability for a quasar to be
lensed by a string is [15] ~3a 86 In(y §)'. With ~10* known quasars, the expected number of double
quasars is ~ 1. It is not excluded that some of the known double quasars are due to strings [15-17].
Galaxies are much more numerous than quasars, and one can search for lines of double galaxies along
open strings or large closed loops [15, 16).

Kaiser and Stebbins [22] have pointed out that strings should leave a characteristic signature on the
microwave background: the background temperature should have steplike discontinuities on curves on
the sky. This effect is similar to the wake formation behind a moving string. The co-moving frames on
different sides of the wake move towards each other with a velocity ~8 # Gu v, where v is the
transverse velocity of the string. As a result, the observer will find the radiation on the trailing side of
the string blue shifted compared to that on the leading side. With v ~ 1 the corresponding temperature
fluctuation is 87/T ~ 8 w# G u v ~ 10 G . Present observational limits are consistent with Gu <1077,

28. String-dominated universe

As we discussed in section 22, noncommuting strings with non-Abelian 7;(M) and Z, strings with
n = 3 can form stable networks and eventually dominate the universe. In this section we shall consider the
possibility that our universe is in fact string-dominated [69].

Suppose the strings are formed at ¢~ # and that the correlation length at the phase transition is
£ <t,. The energy density of strings at that time is py(f) ~ pw & . At later times the strings are just
stretched by the expansion of the universe, p,(f) @ a %(t). The time # when the universe becomes
string-dominated can be found from (assuming #,> t.,)

pslp (tS) ~ G/J*(tO/ ¢ )z(teq/ tO)(ts/ teq)2/3 ~1. (281)

2

For t> t,, using the evolution equation (d/a)’*~ G p, = a”?, we find that the universe expands like

a(f) = t. (28.2)

This is the same t-dependence as one finds in a universe with £ <1 at redshifts 2+ z < 027" [65]. Thus,
a universe with =1 which becomes string-dominated at a redshift z; mimics the behavior of a
universe with 2 ~ 2+ z,)'<1.

The value of £2 very close to 1 is predicted by the inflationary scenario [23]. On the other hand, there
is strong observational evidence indicating that 0.2 < {2 <0.5. This discrepancy can be resolved if the
universe becomes dominated by strings at 0 < z,<3.

Requiring that #,~ 10" s and using the values ., ~ 10"'s, t,~ m,/n” [see eq. (2.9)], we find from eq.
(28.1)

n ~ 10%(£/15)"* GeV < 10 GeV . (28.3)

The corresponding value of G u is <107, The typical distance between the strings is ~(G )" tores
10" cm, where ., ~ 10* Mpc is the present cosmic time. Although the nearest string may be closer to
us than the Sun, its experimental detection seems nearly impossible. Local gravitational effects of strings
with Gu <107 are totally negligible, and even if the observer is so lucky that the string passes
through his own body, he will hardly notice it.
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It should be noted that no realistic grand unified models have been suggested which predict strings
developing stable networks at such a low-energy scale (n <10*GeV). The universe can also be
dominated by “regular” strings, which are still moving at relativistic speeds, but have vanishingly small
intercommuting probability. The condition for 7 in this case is [69] 7 < 10° GeV.
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Note added in proof

I'would like to mention some interesting new developments that occurred after this paper was submitted.

(1) Albrecht and Turok [70] have done a direct numerical simulation of the evolution of strings. They
used the method of ref. [54] to simulate the phase transition and evolved the resulting system of strings by
solving numerically the dynamical equations of motion. The intercommuting probability for intersecting
strings was assumed equal to one. The results of the simulation are basically in agreement with the scenario
of string evolution described in section 22 and, in fact, put that scenario on a firmer basis.

(2) Witten has shown [71] that in some grand unified models electromagnetic gauge invariance can be
spontaneously broken inside the strings. Such strings would behave as superconducting wires. If an electric
field E is applied along a superconducting string, the current builds up at the rate di/ds = B(ce?/h)E, where e
is the gauge coupling and B is a model-dependent numerical coefficient. When the current reaches a critical
value inay, its growth terminates and the string starts producing particles at the rate d*?N/dz d¢ ~ (e/#)E. The
magnitude of inay is also model-dependent, but does not exceed en/#, where 7 is the energy scale of the
string.

Before Witten’s paper it appeared that strings can manifest themselves only through their gravitational
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interactions. However, superconducting strings can have very interesting interactions with cosmic magnetic
fields. Consider a string moving through a magnetized plasma with a velocity v. In the frame of the string
there is an electric field E = ¢~ 'v X B, and the current builds up at the rate di/dt ~ (¢*/#)vB. This current
creates its own magnetic field which in turn acts on the plasma. The physics of these interactions of strings
with cosmic plasmas is not well understood. Some interesting possibilities are indicated in refs. [71, 72].
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