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1. Introduction

1. Overview

Recentdevelopmentsin cosmologyandparticle physicsweremarkedby a closeinteractionbetween
the two fields. The connectinglink was provided by Kirzhnits [1] who suggestedthat spontaneously
brokensymmetriescan be restoredat sufficiently high temperatures.According to modernideas,the
elementaryparticle interactionsare describedby a grand unified theory (GUT) with a simple gauge
group G which is a valid symmetry at the highest energies.As the energy is lowered, the model
undergoesa seriesof spontaneoussymmetrybreakings:

G+ H~+” ~ SU(3)x SU(2)x U(1)-+SU(3)x U(1)em.

In the context of hot big bang cosmology this implies a sequenceof phasetransitionsin the early
universe,with critical temperaturesrelatedto the correspondingsymmetrybreakingscales[2].

Phasetransitionsin the earlyuniversecan give rise to topologically stabledefects— vacuumdomain
walls, strings and monopoles [3]. Hybrid topological animals— walls boundedby strings [4-6] and
monopolesconnectedby strings[7,8] — can alsobe formed.The first classificationof topologicaldefects
anda discussionof their evolutionwere given by Kibble in 1976 [3]. Sincethat time, agreatdealhas
been learned about the evolution and cosmological consequencesof various defects. The main
conclusionscan be summarizedas follows. Topologically stable domain walls and monopolesare
disastrousfor cosmologicalmodelsand shouldbe avoided[9,10]. The hybrid structuresareharmless:
theyrapidly breakinto piecesanddecaypracticallywithout trace.Strings,on the otherhand, causeno
harm, but can lead to very interestingcosmologicalconsequences.In particular,they can generate
density fluctuationssufficient to explain the galaxy formation [11—13]and can producea numberof
distinctiveanduniqueobservationaleffects.For strings of grandunificationscale~ 10~GeV) someof
theseeffectswill soonbe within the reachof experimentalcapabilities.

This paperreviewsthe formation,evolution andcosmologicalconsequencesof macroscopictopolo-
gical defects.(That is, of all defectsexcludingmonopoles.We will be interestedin monopolesonly in
the contextof monopolesconnectedby strings.)The readerwill noticethat,comparedto otherdefects,
strings occupyaprominentposition in this review. The reasonis that, of all the defects,they are the
most interestingandmuchbetterstudied.The paperis organizedasfollows. The remainderof chapter1
givessomebasicfactsconcerningthe hot cosmologicalmodelandthephysicsof phasetransitionsin the
earlyuniverse.Varioustypesof defectsandthe conditionsfor their existencearediscussedin chapter2.
Chapter3 dealswith the dynamicsof stringsand walls, their gravitationalfields and their interaction
with particles.The formationandcosmologicalevolutionof topologicaldefectsarereviewedin chapter
4. Finally, chapter5 discussesthe cosmologicalimplications of strings: their possible role in galaxy
formation, observationaleffects of strings, and the possibility that we live in a string-dominated
universe.Most of the material in this reviewhasbeenpublishedelsewhere,but someof the resultsare
new.

Throughoutthe paperI usethe notationsm~= 2.2x iO~g= 1.2x 1019GeV and t~=5.3x 10~s for
the Planck mass and time, respectively,and the systemof units in which h = c — 1. In theseunits

= m’ andthe gravitationalconstantis G= m2.
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2. Standardcosmologicalmodel

In the standardhot cosmologicalmodel it is assumedthat the universebeginsin the stateof local
thermal equilibriumt at a very high temperatureand then cools in the courseof the cosmological
expansion.The universe is assumedto be homogeneousand isotropic; besides,at early times the
universe is very nearly flat, andthus it is accuratelydescribedby the spatially flat Robertson—Walker
metric

ds2= dt2 — a2(t) (dx2+ dy2 + dz2). (2.1)

The expansionof the universeis governedby the evolutionequation

(á/a)2=~irGp (2.2)

wherep is the energydensity.Theenergyconservationlaw can be written as

~-(pa~)= —P~-(a~), (2.3)

whereP is the pressure.In a radiation-dominateduniverse,

p~N(T)T~ (2.4)

where N(T)= Nb(T)+ ~N~(T),Nb(T) and N~(T)are, respectively,the numbersof distinct helicity
statesfor bosonsandfermionswhose massesaresmall comparedto T

As long as the expansionof the universeis adiabatic,the entropyis conserved,andwe can write

(2.5)

where

s=~-N(T)T~ (2.6)

is the entropydensity.If T is not nearanymassthreshold,N(T) = const.and aT= const.Then eqs.
(2.2) and(2.3) give

a(t) cc t112, (2.7)

tTheword “local” is important here.A system in completeequilibrium necessarilyhasthermalenergydensity fluctuationswhich aremuch

greaterthanone can afford in theearlyuniverse(large-scaledensityfluctuationsgrowby gravitationalinstability). It is assumed,therefore,that at
time t theequilibriumis establishedonly on scalessmallerthanthehorizon, é< t andthattheuniverseis muchsmootherthanthethermalstateon
scalest>t.
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p = 3/(32irGt2), (2.8)

T (45/l6ir3NG)114f”2= 0.55(NG)-t14t~’2. (2.9)

The equationof stateof the universein the radiation-dominatederais P = p13.
Whenthe universebecomesmatter-dominated,P -~ 0 andwe have

(2.10)

a(t)oct2”3, (2.11)

p = (61TGt2)~. (2.12)

The transitionbetween the two regimesoccursat the time of equal matter and radiation densities,
t -~ t~.We shall estimatet~later in this section.

Two importantparameterscharacterizingthe presentuniversearethe Hubble “constant”,H = a/a,
andthe density,p. It is customaryto usedimensionlessparameters,h and£1:

h = H/100km s~Mpct, (2.13)

D=pIp~, (2.14)

wherePc = 2 x 10~h2g cm3 is the critical density. Closed, open and flat universescorrespondto
11> 1, Ii <1 and12 = 1, respectively.The inflationarycosmologicalmodel[23]predictsthat 12 = 1 with
very high accuracy.Then eq. (2.11) appliesat all t> t~,and the presentage of the universe can be
foundas

tprcs= ~H1 = 2X 1017h~~. (2.15)

The actualvaluesof h and(1 areknownonly approximately:

0.5sh~1, (2.16)

0.1~A2s1. (2.17)

Nucleosynthesisconsiderationsrequirethat the densityof baryons,Pa,cannotexceedO.lPc,

flB~0.1, (2.18)

andthus, if 12 is closeto 1, the universemustbe dominatedby particlesotherthan baryons.
In discussingthe recentevolution of the universe,it is convenientto usethe redshift parameter,z,

definedas

1+z = a(t~~
5)/a(t). (2.19)

For 11 = 1, (1+ z) cc
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The presenttemperatureof the photongas is T= 2.7°Kand the correspondingenergydensity is
= 4.5 x iO~’g cm3. The total density of “radiation”, includingphotonsandN~speciesof massless

neutronsis

Pr (1+0.23N~)p

7. (2.20)

At t> t~the ratio Pr/P decreaseslike (1 + z), andthus the time of equalmatterandradiation densities,
t~,correspondsto the redshift (for N~= 3)

1+z~=2x10’flh
2. (2.21)

The densityof the universeat t~is p~= 3.2 x 1016(fl h2)4g cm3. The time t~can be approximately
foundfrom Peq 3/32irGt~.This gives

-~ 4 x 10i~(t1h2)2s. (2.22)

An importantevent in the history of the universeis the decouplingof matter and radiation,when
protonsandelectronscombineto form hydrogenatoms.This happensat

Zdec 1300, tdec 5 x lo~~(Dh2)~’2S. (2.23)

This concludesmy brief review of the standardcosmologicalmodel. For a detaileddiscussion, the
readeris referredto the standardtexts[23,24].

It hasbeenemphasizedby a numberof people that the initial conditionsassumedin the standard
cosmologicalmodel areratherunnatural(see,e.g., refs.[23,3]). Therequiredhomogeneitycould not be
establishedby causalprocesses,the approximateflatnessof the presentuniverserequiresa severe
fine-tuning of the balancebetweenkinetic and potentialenergiesat early times, and the interaction
ratesat energies>i0~GeV are insufficient to establishthermalequilibrium. An attractivesolutionto
most of theseproblems(and also to the problemof overabundanceof superheavymonopoles[10])is
given by the inflationary universescenario[23]proposedby Guth. During the inflationary phasethe
universe is dominatedby the false vacuum energy density, Pv = const., and eq. (2.2) gives a(t) cc

exp(Ht),whereH= (8irGp~/3)”2.As a resultof this exponentialexpansion,regionsinitially within the
causalhorizon areblown up to sizesmuchgreaterthan the presentHubble radius.The vacuumenergy
eventually thermalizes,and the following evolution is the same as in the standardmodel. Any
topologicaldefectsproducedbeforeinflation are inflated away,andoneshouldbe interestedonly in the
defectsproducedafter or nearthe end of inflation. In the following sectionswe shall assume,unless
otherwiseindicated,that the phasetransitionsof interestarenot of inflationary type.

3. Cosmologicalphasetransitions

Consider a field theory with a symmetry group G and a Higgs field 4 with a potential of

self-interactionV(4i). For illustrative purposes,it will be sufficient to takeG= U(1) and

V(4)= ~A(4~ — p2)2 (3.1)
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where tj is a complex scalarfield and A >0. The U(1) symmetry is the symmetry of phasetrans-
formations,~ —~e~.The minima of the potentialareat nonzerovaluesof ~, and so thesymmetryis
spontaneouslybroken and~ acquiresa vacuumexpectationvalue(VEV),

= 77 e’8. (3.2)

Themagnitudeof (4) is fixed by themodel,but thephase0 is arbitrary.We thushavea manifold, M,
of degeneratevacuumstatescorrespondingto different choicesof 0. In our example,M is a circle in the
complex~ plane(J~I=

At finite temperaturesthe effective potential for ~i acquiresadditional, temperature-dependent
terms.In thehigh-temperaturelimit,

Vr(cb)AT2cb~cb+V(q~), (3.3)

wherethedimensionlessconstantA is a combinationof theself-couplingA andothercouplingsof the
field 4 (e.g. Yukawa couplingsand gaugecoupling)[2]. Herewe shall assumethat A >0. (The case
A <0is discussedat theendof section9.)From eqs.(3.1) and (3.3) we seethat theeffectivemassof the
field 4 at temperatureT is

m2(T)= AT2 — A
77

2. (3.4)

m2(T)is equalto zeroat T = T~,where

T~= (A/A)1”2 77. (3.5)

UnlessA is very small, we haveT~— t~.For T> T~,m2(T)is positive, theminimumof V(4) is at ~ = 0,
andso theexpectationvalueof 4’ vanishesandthesymmetryis restored.T~is thecritical temperature
of thephasetransitionfrom thesymmetricto thebroken-symmetryphase.In our examplethe transition
is second-order(the symmetricstate (4’) becomesunstableat T < Ta). More complicatedmodelscan
lead to first-order phasetransitions,wherethe symmetricphaseremainsmetastableat T< T~and the
transitionoccursthrough bubblenucleation.

The general caseof symmetrybreaking,G—~H, can be analyzedin a similar manner[2,3]. In the
symbolic relation G—~H,G is the original groupand H is its unbrokensubgroup.H includesall
elementsof G which leavethe VEV (4’) invariant. Themanifold of the equivalentvacuumstates,M,
canthen be identifiedwith thequotientspace,G/H.

In thecosmologicalcontext,as theuniversecools throughthe critical temperatureT~,theHiggs field
4’ will tend to develop an expectationvalue(4’) correspondingto somepoint in the manifold M of
equivalentvacua.However, sinceall points in M are equivalent,the choice will dependon random
fluctuationsandwill be different in differentregionsof space.Onecanintroducethecorrelationlength,
~ suchthat the “directions” of (4’) areuncorrelatedat pointsseparatedby a distancegreaterthan ~. [In
themodel (3.1) the “direction” of (4’) is determinedby the phase0, and ~is the length beyondwhich
thephasesof (4’) areuncorrelated.]

Correlationsin thefield 4’ canbe describedby a thermalaverage

G(Ix - “I) = (4’~(x,t) 4’(x’, t)). (3.6)
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Forthemodel (3.1)at T> T~we canwrite

G(Jx— x’I) = 2J exp{ik(x— x’)}{exp(wk/T) — 1}1 d3k (3.7)
(2ir) Wk

0

wherew~= k2+ m2(T)and I havesubtractedthe vacuumcontributionto G, which is of no interestto
us. We shall assumethat T is sufficiently closeto T~,so that m(T) ~ 1’. Thenit is easilyshownthat for

— r ~ T1 we haveG(r) = T2/6 and for r ~- T~

G(r)=j-~.-exp{_m(T)r}. (3.8)

At T—t. T~,m(T)-+0 and the correlationsdecay with distancelike r~ for r> T~.Thus, for a
second-orderphasetransition,thecorrelationlength is given byt

(3.9)

For a first-order phasetransition which proceedsthrough bubble nucleation and coalescence,the
correlation length can be greatly increased.However, in any event, ~ should satisfy the causality
constraint:correlationscannotestablishon scalesgreaterthan the causalhorizon: ~~ 4~[3]. ‘2H ~S

definedas thedistancetravelledby light during the lifetime of theuniverse:

eH(t)= a(t)J-4~). (3.10)

If thephasetransitionis notof inflationary type (thatis, if theuniversedoesnot becomedominatedby
thevacuumenergy),4~is always -St, andwe canwrite

(3.11)

where t~,is the time at which thephasetransactionis completed.
Much of the initial randomvariation of (4’) will die out in the courseof further evolution, sincea

uniform Higgs field is energeticallypreferred.However,in manycases,topologically stabledefectswill
be left behindwhich cannot,for topologicalreasons,beeliminatedby a continuousevolution.The types
of possibledefectsaredeterminedby the topology of the manifold,M, as first discussedby Kibble [3].
(Seealso ref. [25].)

tIt is often said that the correlationlength in second-orderphasetransitionsdivergesat T = T~.The apparentdiscrepancyis resolvedvery
simply: thedefinition of thecorrelationlength usedin condensedmatterphysicsis different from our definition of ~. A condensedmatterphysicist
definesthecorrelationradiusr,, asthedistancebeyondwhich correlationsdecayexponentially.In our example,re— 1/m(T)—s~asT—~T

0.
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2. Topologicaldefects

4. Domain walls

Domainwalls areformedwhena discretesymmetryis broken.The simplestmodel of this sort is

L= ~(o,~4’)2—~A(4’2—p2)2 (4.1)

where 4’ is a realscalarfield. The symmetryis Z
2:4’-+—4’, theminima of V(4’) are at 4’ = ±77,and so

the manifold M consistsof only two points. As we go from a region with (4’)= +~ to a region with
(4’) = —i’, we shouldnecessarilypassthrough(4’) = 0, and thus the two regionsmustbe separatedby a
domainwall of falsevacuum.

Thewall is describedby a classicalsolutionof the field equation

D4’+2A4’(q5
2—~2)=0. (4.2)

For a plain wall in thexy-planethesolution is [9]

q5
0(z)= i~tanh(z/ö), (4.3)

where ö = A _1~~2~_1is the thicknessof thewall. The false vacuum energy density is Pv A77

4, and the
surface energy density of the wall is 0 -~ -~ A 1i2~3~To calculate u exactly, we can compute the
energy-momentum tensor for the solution (4.3),

T~.,=o~4’a~4’—g~~L. (4.4)

This gives

T~= f(z)diag(1, 1, 1, 0) (4.5)

where

f(z)= A
77

4[cosh(z/ö)]4 (4.6)

is a bell-shaped function of width -~ peaked at z= 0. The surface energy density is given by

o=f Tgdz=~A112
77

3. (4.7)

Note the important fact that T~in eq. (4.5) is invariant with respectto Lorentz boosts in the
xy-plane.This is not surprising, since4’o(z) is a scalarfield independentof x, y, t, and thushavingthe
sameinvariance.Therefore,it makessenseto talk only abouttransversemotion of thewall; motion in
tangentialdirectionsis unobservable.Strictly speaking,this appliesonly to planewalls, butmacroscopic
walls with curvatureradii R~ ô can locally be considered as flat.

In general,domainwalls form whenthemanifold M hastwo ormoredisconnectedpieces.Theycan
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be classified by the homotopy group IT0(M), which counts the disconnected components of M. [In our
example i~(M) = Z2.] Examples of GUTswith domain walls can be found in ref. [8].

5. Strings

The simplestmodel that gives rise to strings is that of a complex scalarfield 4’ with a self-interaction
of the form (3.1). After the phasetransition4’ developsa VEV (4’) = ~ e~°,where0 varies on the scale
of thecorrelationlength ~. Since (4’) is single valued, the total changeof 0 aroundany closed loop in
spacemustbe equalto 2irn, where n is an integer:

~0=21Tn. (5.1)

Consider a closed ioop with i~0= 2ir and imagine continuouslyshrinking the loop to a point. If no
singularitiesare encountered,thevalue n = 1 in eq. (5.1) cannotdiscontinuouslychangeto n = 0, and
thus we must encounter at least one point where the phase 0 is undefined (which means (4’) = 0). This
shows that at least one tube of false vacuum should be caught inside any ioop which has i~0� 0. It is
clear that such tubes, which are called strings, can have no ends and must be infinite or closed
(otherwise,it would be possibleto contractthe loop without crossingthe string).

Thepropertiesof stringsproducedby breakinglocal and global symmetriesaresomewhatdifferent.
First consider the case of a local U(1) symmetry,

L = D~4’~D~4’— ~ P~— ~A(4’~4’— 772)2, (5.2)

where D1. = 8,.. — igA,.., F,..,, = 9,~A,,— 8,,A,.. andg is the gaugecoupling.A string solution in this model
was first discussed by Nielsen and Olesen [26].In cylindrical coordinates (r, 0, z)the Higgsfield at large
distances from the string has the form

(5.3)

wheren is an integer,and the gaugefield is

A=-~-a,ln4’. (5.4)

The asymptoticforms (5.3) and (5.4) are such that F,~,,= 0 and D,,,çb = 0, so that the energydensity
vanishesoutsidethe string core. (Theseforms are approachedexponentiallyas r—~oc[26].) Using the
Stokes’ theorem we find

JB.dS=~A.d�=2irn/g, (5.5)

whereB = Vx A is the magneticgaugefield. We see that the string carries n units of elementary
magneticflux. [Stringsin this model are very similar to the quantizedtubes of magneticflux in
superconductors.]An elementarystring correspondsto n = ±1.Strings with nI >2 are probably
unstableand decayinto elementaryones[42].



A. Vilenkin, Cosmicstringsanddomain walls 273

The radius of the string core is determinedby the Comptonwavelengthsof the Higgs and vector
mesons:84, -~ m~ and 8A -~ m~, where m

4, = A 1/2~ and m,~.= g~ are thecorrespondingmasses.For
m4, <mA, which is usually thecase,thestringhasan innercoreof falsevacuumwith linear massdensity

~2 and a tube of magneticfield of radius
8A > 8~with j.~ -~ B282 772 Thus, the total

massof string per unit length is [26,3]

(5.6)

Strings of cosmologicalinteresthavesizes muchgreater than their width. In this casethe internal
structureof thestring is unimportantandphysicalquantitiesof interest,suchastheenergy-momentum
tensor T~, canbe averagedoverthecross-section.For a static straightstringlying alongthe z-axiswe
define

= 8(x) 8(y)J T~dx dy. (5.7)

The stringsolution is invariantunderLorentzboostsin thez-direction,and thus~ = 1’~with all other
componentsequalto zeroexcept,perhaps,T with i = 1, 2. To show that theseremainingcomponents
arealso equalto zero, wecanusethe conservationlaw, T&

3 = 0, and write

fT1~jxkdXdy=0, (5.8)

whereall indicestakevalues1 or 2. Integrationby partsgives

fT~dxdy=0 (i,k=1,2). (5.9)

Thus, theenergy-momentumtensorof thestring is given by

= ~ diag(1,0,0, 1)8(x)8(y). (5.10)

The tensionalongthe string is equalto theenergydensity. [Onecan saythat thegeneralform of T,,,,,
for walls and strings can be obtained from the vacuum energy-momentumtensor by dimensional
reduction.In vacuum,Lorentz invariancerequiresthat T~oc g~= diag(1,1, 1, 1).]

6. More complicatedstrings

Breakinga U(1) symmetryis onebut not theonly wayto makestrings. In the general case, strings
are formed when the manifold M of equivalentvacuais not simply connected(that is, if it contains
unshrinkableloops). Strings are classified by the first homotopy group n-~(M), which counts the
equivalenceclassesof loops in M. In theexampleof the previoussectionG = U(1), M is a circle and
iri(M) = Z, thegroupof integers(theyare the integersappearingin eqs.(5.1) and (5.5)). The general
condition for the formation of stringscan thus be written as

(6.1)

whereI is the trivial group.
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Thefollowing theoremfrom thehomotopytheoryis very useful for analyzingthe topologicaldefects.

Supposethat thegroupG is brokento asubgroupH: G—~H.

Theorem. If ir~(G)= 1T~_
1(G)= I, then

ir~(M)= ir~_1(H), (6.2)

where theequalitysign “=“ indicatedisomorphism.

In particular,if iri(G) = ffo(G) = I, then

iri(M) = iro(H). (6.3)

Equations(6.1), (6.3) imply that stringscanbeformedin a phasetransition G—* H only if lTo(H) � I. This
meansthat the unbrokengroupH shouldcontain a discretesymmetry[27].(This conclusiondoesnot
apply to the model (5.2), since iri[U(1)] = Z � I.) A fairly common exampleof this sort is when the
groupH is a productof a continuousgroupand12, e.g. [27]

SO(10)-+ SU(5)x 12. (6.4)

12 strings formed in this phase transition have no direction and any two parallel strings can be
annihilatedby one another.Examplesof realisticGUTs with strings canbe foundin refs. [13,27, 28].

If thesymmetrybreakingis G —~K x Z~with n >3, thenstringscanform verticeswith severalstrings
joining at the vertex.Even more exotic strings are formedwhen the first homotopy group iri(M) is
non-Abelian. In this casethe strings correspondingto noncommutingelementsof iri(M) cannotpass
through one another[29,3] (More exactly, when two such strings movethrough oneanother,a third
string is formedstretchingbetweenthe two.) No realistic modelswith noncommutingstrings haveyet
beensuggested.

7. Global strings

Stringscan beformed as a resultof local aswell asglobal symmetrybreakings.We shall call them
local and global strings, respectively.The topological conditions for the formation of strings are the
samein both cases,but thephysicalpropertiesof local andglobalstrings aresomewhatdifferent.Local
stringswere discussedin section5, andhereweshall concentrateon global strings [5].

The simplest case is that of a global U(1) symmetry.The Lagrangianis given by eq. (5.2) with A,., set
equalto zero:

L= 8~4’~ê”4’—~A(4’~4’—fl
2)2. (7.1)

Like before,thephaseof 4’ changesby 2ir aroundthestring,the radiusof thecoreis 8 — A~2
77~,and

outsidethe core 4’ is given by 4’ = m~exp(iO). But now there is no gaugefield to compensatethe
variationof the phase0 at r ~ 8 (and,of course,thereis no magneticflux associatedwith the string).
The mass per unit length of the string is



A, Vilenkin, Cosmicstringsanddomain walls 275

R

I 1a4’2 R
—— 2irrdr’=2mn~2ln—, (7.2)

J röO 8
6

whereR is thecut-off radius.We seethat j~ logarithmicallydivergesasR —~cc• Note, however,that the
energyof a closedloop is alwaysfinite: E 772R ln(R/ô),where R is thesizeof the ioop and I have
assumedthat the loop is momentarilyat rest.The In R factorreflectsa long-rangeinteractionbetween
different parts of the loop, which is dueto thepresenceof a masslessGoldstoneboson.Two parallel
stringswith oppositesignsof ~0 attractoneanotherwith a forceper unit lengthF -~

77
2/R,whereR is

the distance betweenthe strings. (Compare with local strings for which the interaction dies out
exponentiallywith distance.)Note also that global strings are analogousto quantizedvortex lines in
liquid helium.

Realistic grand unified models with global strings can be easily constructed[5,30]. The simplest
model is the minimal SU(5)which hasan “accidental” global B — L U(1) symmetry.BreakingU(1)B..L
gives rise to strings.

8. Monopoles

Monopoles [31]are point defectswhich form when themanifold of equivalentvacua,M, contains
unshrinkablesurfaces,that is, when

ir
2(M)�I. (8.1)

1T2(M) is thehomotopygroupclassifyingunshrinkablesurfacesin M.
Supposethat thegroupG is suchthat iri(G) = 1T2(G)= I (all currentlypopulargrandunified groups

satisfythis condition).Then, applyingthe Theoremof section6 for n = 2 we find

ir2(M) = iri(H). (8.2)

From(8.1) and(8.2) we obtainthe condition for the formation of monopoles:ir1(H)� I. For example,
monopoleswill be formedat a phasetransition

G-*KxU(1) (8.3)

(since iri[U(1)] = Z). In thesequenceof symmetry breakingsfrom G down to SU(3)X U(1)em, a U(1)
factormust first appearat somestage,andthus theformationof monopolesin theearlyuniversecannot
be avoided.

For monopolesproducedas a result of a local symmetry breaking, the energy density decays
exponentiallywith distanceform thecenter.The massof suchmonopolesis [3]

m’—4ir-q/g. (8.4)

For globalmonopoles,thevariationof the Higgs field 4’ outsidethecoreis not compensatedby a gauge
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field, and the total energyis linearly divergent. This meansthat monopolesand antimonopolesare
attractedwith a confining force independentof the distance.

In this paperwe will be interestedin monopolesonly in the context of monopolesconnectedby
strings (seethenextsection).Fora detaileddiscussionof monopolesandtheir evolution,seerefs.[3,10]
and Preskill’spaperin ref. [23].

9. Monopolesconnectedby strings

Monopolesformedat a phasetransition canget connectedto stringsat a subsequentphasetransition
[7,8]. A typical sequenceof phasetransitionsleadingto this seriesof eventsis

G-~KxU(1)--~.K. (9.1)

The first phasetransitiongives monopolescarryingthe magneticflux of the U(1) gaugefield. At the
secondtransitionthe magneticfield is squeezedinto flux tubesconnectingmonopolesand antimono-
poles. Closedandinfinite stringscan also be formed.

In this classof modelsstrings are not topologically stableandcan breakproducingmonopolesand
antimonopolesat the free ends. However, breakingof the string is a tunneling processand its
probability is typically very small. A semiclassicalcalculationgives [7]

p cc exp(—irm2/,a), (9.2)

wherem is themonopolemassand~.t is thestring tension.
An interestingmodel of the type (9.1) hasbeensuggestedby Langackerand Pi [32]as a possible

solutionto theproblemof overabundanceof superheavymonopoles.Thesequenceof phasetransitions
is

SU(5)~SU(3) ~‘< SU(2)X U(1).’4SU(3).’4SU(3)X U(1)em. (9.3)

Monopolesformedat the first transitiongetconnectedby strings at thesecondphasetransition.But at
the third phasetransitiontheU(1) symmetryis restoredand thestringsdisappear.

The possibility of a symmetry restoration at low temperatureswas first discussedby Weinberg[2].
The propertiesof topologicaldefectsin this type of modelsaresomewhatdifferent from theusualcase,
andwe shall briefly discussthedifference.Considera finite-temperatureeffectivepotentialof the form

VT(4’) = m2(T)4’+ 4’ + ~A(4’~4’)2 (9.4)

where

m2(T)=m2(0)+ AT2. (9.5)

The parameterA is determinedby the interactionof 4’ with effectively masslessdegreesof freedom.A
can be approximatelyconstantover a wide range of temperatures,but can also changeat mass
thresholdsandat phasetransitions.It is usuallyassumedthat m2(0)<0 andA>0. Then thesymmetry
is brokenat low temperaturesand theanalysisof section3 applies.Supposenow that m2(0)>0 and that
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A becomesnegativebelow sometemperatureT1 ~ m(0). Thenat T< T7 thesymmetryis brokenand4’
developsa VEV

I(4)J = (IAI/A)
1”2 T(1 — T2

2/T
2)112, (9.6)

where T
2= 1A1

112m(0)~T
1. At T = T2, (4’) = 0, andbelow T2 thesymmetryis restored.(Quasi)stable

string solutions exist only in the range T1> T> T2. For T ~‘ T2, the width of the strings is 6 —

1/Im(T)J -~ AL”
2T1, the false“vacuum” energydensityis Pv A(4’)4 -= A2A’ T4, and the linear mass

densityof thestring is

(IA!/A)T2. (9.7)

As T-.* T
2, we haveô—*co, ~ —p0, and the strings “dissolve”. The most important difference of this

model from theusualcaseis that the physicalcharacteristicsof stringsdependon the temperaturein an
essentialway.

10. Walls boundedby strings

Considerthesequenceof symmetrybreakings

G—~~KxZ2-~K. (10.1)

The first transition gives rise to strings (seesection 6) which get connectedby domain walls at the
secondphasetransition[4,6].

Walls boundedby stringscanalso be formeddue to breakingof an approximatesymmetry[5]. As an
exampleconsidera model with an approximateglobal U(1) symmetry

L = ö~4”c9~4— ~A(4’~4’— 772)2+ 2m
4(cosNO — 1), (10.2)

where0 is thephaseof 4’, 4’ = p e’°,andN is an integer.This is a reducedversionof the invisible axion
models designedto solve the strong CP problem [33—35]. In such models m — 1 GeV and 17 ~‘ m
(typically, i~ 10~.-10~~GeV). The approximateU(1) symmetryof (10.2)correspondsto theanomalous
chiral Peccei—Quinnsymmetrywhich is explicitly brokenby instantonsat the strong interactionmass
scalem. We shall first considerthe caseof N = 1, when thepotential hastheshapeof a Mexicanhat
slightly tilted by thepresenceof the 0-dependentterm.

The field 4’ acquiresa nonzeroVEV when the universecools to a temperatureT — i~. At such
temperaturesthe last termin (10.2)is negligible, andwe getglobal U(1) strings, asdiscussedin section
8. At sufficiently low temperaturesthe0-dependentterm in (10.2)becomesimportant.The minimumof
energy(for N = 1) correspondsto 0 = 0 (mod2ir). However,thephase0 cannotbecomeequalto zero
everywhere,sinceit changesby L~O= 2ir aroundthestrings.Hence,0 tendsto settledown to zeroat all
pointsarounda string, exceptwithin adomain wall, so that 0 changesby 2ir acrossthe wall [5].

To seethat themodel (10.2) indeedhasdomainwall solutions,we note that, away from thestring
cores,the VEV of 4’ is (4’) = 17 e’°,and theeffectiveLagrangianfor 0 is

L
6 = ~2 ~ D”O + 2m

4(cos 0—1). (10.3)
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The correspondingwaveequationis

LI1O+m~sin0=0, (10.4)

where ma= m2/~is the axion mass.Equation (10.4) is the so-called sine-Gordonequation which is

known to havedomainwall solutions (solitons)[25]:

0(x)= 4tan’ exp(max), (10.5)

wherex is the axis perpendicularto the wall. The thicknessof the wall is 8 — m;1 and theenergyper
unit areais [25]

0= 16m2,~. (10.6)

Domainwalls in this model (aswell asin themodel (10.1))arenot topologically stable,andthereis a
nonzeroprobabilityfor the formationof a hole in thewall boundedby a string. However,for m <~ the
tunnelingprobability is exponentiallysmall [4].

The analysisof the caseN � 2 is very similar, and here I shall only indicatethe differences.The
minima of the potential areat 0 = 2mm/Nwith n = 0, 1, . . . , N — 1, andso thereare N distinct vacua
which can be separatedby topologically stable walls [34].The phase0 changesby 2ir/N acrossthe
“minimal” wall. (Therecanbewalls with z~O= 2’rrn/N, but they areprobablyunstable.)Since 0 changes
by 21T arounda string, eachstringgetsN domainwalls attachedto it.

3. Physicalprocesseswith stringsand walls

11. Dynamicsofstrings

In this sectionwe shall discussthe dynamicsof macroscopicstrings assumingthat their dimensions
are muchgreaterthan the thickness8.

The space—timetrajectoryof astring can be parametrizedas

x1L=x1L(~a); a=0,1 (11.1)

where ~ is a timelikeand~ is a spacelikeparameter.In this andmostof thefollowing sectionsweshall
consideronly local strings which do not interact with a long-rangeGoldstone field. The action
functional,5, for suchstringsshouldsatisfy the following requirements:(i) S shouldbe invariantunder
generalcoordinatetransformations;(ii) S shouldbe invariantwith respectto a reparametrization

~a~ja(~-). (11.2)

(iii) the action should havethe form of an integral over the 2-dimensionalworld sheet(11.1). The
“building blocks” for theactionarethe functionsx’~(~”)and the stringtension,~.

Thesethreeconditionsdeterminethe action uniquely, up to a numericalfactor:
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S = —~ J[_g(2)]~/2d2~, (11.3)

where g(2) is the determinantof the 2-dimensionalmetric tensoron the surface,g~ = g~vx~x~,and
=

g(2) = ~2~i2 (x . x’)2. (11.4)

Here,a . b = a~’b,.,,x~’= öxM/8~°andx~M=
Equation(11.3) is theNambu action for a relativistic string [26,36]; the integralin this equationis

just thesurfaceareaof theworld sheetdescribedby thestring. If we take~‘ to be the length alongthe
string � and ~° to bethe time t, theneq. (11.3)takesthe form [26]

s=_,.fdtJde(1_v~)1a, (11.5)

where
ôx ox ~Oxt9X\

(11.6)
ot O�\Ot oei

is the transversevelocity. Equation(11.5)is easilyunderstoodif we notethat only the transversemotion
of thestring is physicallyobservable.

The equationsof motion for a stringare

a
1OL\0L0 117

O(’kDx~) Ox’s ( . )

whereL = —~ [— g(
2)]~is thestring Lagrangian.Thelast termin (11.7)is nonzeroonly if themetricg

4~
dependson x~.Let usfirst considerthedynamicsof stringsin flat space—time,whereeq. (11.7)takesthe
form

8 j’ (x . x’) x’
M — x’2P 1+ 8 j (x . x’) x’~— x2xlM — 0 11 8

orl[(~.x?)2_fx~2]1~2J~.1 I[(~.xl)2_~2x~2]1/2— . ( . )

The equationsof motion can be simplified by a suitablechoice of theparameters~°, ~‘. We can
choose~° to be the time coordinateand ~“ to be oneof thespatialcoordinates,say,

~°=t, ~=x. (11.9)

Thenthestring trajectoryis describedby two functions,y(x, t) andz(x,t), and it is easilyverified that

y=f(x±t), z=g(x±t) (11.10)

is a solutionof eq. (11.8)for arbitraryfunctionsf andg [38].Thesesolutionsdescribewavesof arbitrary
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shapepropagatingalong the string with the velocity of light. Note that a superpositionof waves
travelling in oppositedirectionsis not, in general,a solution,sinceeq. (11.8) is nonlinear.

A different choiceof parameters~‘o ~ is convenientfor studyingclosedloops of strings.The gauge
freedom(11.2)allows us to imposetwo gaugeconditions which we canchooseas[36,37]

~x’=0; ~2+x’2~~~O (11.11)

(x”~and ~‘ arespacelikeand timelike, respectively.)Thentheequationof motion (11.8)takestheform
of a waveequation

u1~+xU~L=0. (11.12)

The conditions (11.11) do not fix the gaugecompletely. There still remainsthe freedom of trans-
formations(11.2)with ~ = ~‘°‘, ~‘ = ~‘°, which implies

(11.13)

We canusethis remainingfreedomto set ~ = x°[notethat this is consistentwith eqs.(11.12), (11.13)1.
Then the trajectoryof the string is describedby a vector functionx(~,t), whereI haveset ~ and
eqs.(11.11),(11.12)give

xx’=O; ~2+x~2=1; (11.14)

x—x”=O. (11.15)

The physicalmeaningof theseequationscan be easilyunderstood.The first of eqs. (11.14)saysthat
the vectorx is perpendicularto the string and thus representsthe physically observablevelocity, V

1.

The secondconstraintequationcan be written asd~= (1 — ~2)_1/2 IdxI = dM/~,where

Mp.J(1_i2)_1~~2de=p.Jd~ (11.16)

is theenergy(mass)of thestring [comparewith eq. (11.5)]. Thuswe havechosen~‘ to beproportionalto
the massof string (countedfrom somearbitrarypoint on the string). Fora closedloop ~changesfrom 0
to M/~aroundthe loop, whereM is the total massof the loop. Finally, eq. (11.15) tells us that the
accelerationof a string elementin its local rest frame(i = 0) is inverselyproportionalto the local
curvature radius,R = Id

2x/d�2L1. The direction of i is such that a curvedstring tends to straighten
out. (Of coursein doingso, it developsa velocity and thereforekeepsoscillating.)

The generalsolutionof eq. (11.15)is

x(~t) = ~[a(~—t)+ b(~+t)], (11.17)

andeqs. (11.14)givethe following constraintsfor the otherwisearbitraryfunctionsa andb:

a’2= b’2= 1. (11.18)
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The energy-momentumtensorof a moving string is [39]

Tlh~~(r,t) = /L Jd~(x~x” — x’s’ x’~)8°~(r— x(~,t)) (11.19)

and the angularmomentumis

J=~Jd~x(~t)xx(~t) (11.20)

(in thegauge(11.14)).

12. Oscillatingloops

The motion of a closedloop in its center-of-massframeis describedby a solutionof the form (11.17),
(11.18),wherea(~)andb(C)areperiodic functionswith periodL = M/~aandM is the massof the loop:

a(~+L)—a(C); b(C+L)—b(~). (12.1)

It is clear from eq. (11.17)that the motion of the loop must also be periodic in time with the same
period. In fact theactualperiodis twice shorter,T = L/2 ratherthan T = L, sinceit is easilyseenthat
[40]

r(~+L/2, t+ L/2) r(C, t). (12.2)

An interestingpropertyof the loop solutions is that, in the genericcase,the string reachesthe

velocity of light at somepointsat certainmomentsduring theperiod[39].From eq. (11.17)we have
P(~, t) = ~[a’(C—t)— b’(~+t)]

2. (12.3)

Now, it follows from (11.18) and (12.1)that thevectorsa’(~)and—b’(~)describeclosedcurveson a
unit sphereas ~ runs from 0 to L. In the generic case,thesetwo curveswill have two or more
intersections.[Notethat sincef a’ d~= f b’ d~~0, neitherof the two curvescancompletelylie in one
hemisphereof theunit sphere.]Let ~= ~ beone of suchpoints,a’(~

0)=—b’(~0).Then

P(Co, nL) = 1, (12.4)

wheren is an integer.
We now turn to specific examplesof loop trajectories.The periodic functionsa and b can be

expandedin Fourier series; then the constraints(11.18) give nonlinearalgebraicequationsfor the
coefficients.Exact solutionscaneasilybe obtainedin which only a few lowest frequenciesarepresent.
Severalfamilies of suchsolutionshavebeenfoundby Kibble andTurok [40]and by Turok [39].The
simplesttype of solution involving only one frequencyis
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~çt) = -~- {e~(sin o~_+ sin u+) — ê2 (coso_ + cos4’ cosu+)— 13 sin 4’ coso+}, (12.5)
4IT

where

(12.6)

areunit vectorsin thedirectionsof theCartesianaxes,and 4’ is a constantparameter.Rotatingthe
coordinateframe by an angle 4’/2 around the direction of I~and performingsimple trigonometric
transformationswe bring eq. (12.5)to the form

x = -~- {I~sin u~cos0o+ e2cos coso~1Cos0o + e3 sin sin o~sin tYo}, (12.7)
2ir 2 2

where 0o = 2mrt/L, 0~= 2ir~7L.At t = 0, the ioop hasthe shapeof an ellipse in thexy-plane.It rotates
andstretchesinto a doubleline alongthez-axisat t = L/4. At this momenttheendsof thedoubleline
aremoving in the x-direction with thevelocity of light. At t = L/2 the loop returns to the elliptical
shape and then goes through the cycle again. The parameter4’ takesvalues from 0 to mr. 4’ = 0

correspondsto a circular ioop which reachesthe velocity of light as it collapsesto a point. 4’ =
correspondsto a doubleline rotating in the (xz)-plane,its endsalwaysmovingwith thevelocity of light.

As we shall see in thenext section,self-intersectingioops canintercommuteandbreakinto smaller
pieces.If all loop trajectoriesintersectthemselvesat somepoint during theperiod,then the ioop will
rapidly decayinto a cascadeof smallerandsmallerloops. Here,an important resulthasbeenobtained
by Kibble andTurok who havefounda classof loop trajectorieswhich neverself-intersect.

It is easily checkedthat adding to (12.5) terms in cos20±and sin 20±doesnot yield any extra
solutions.The next simplestsolutionsinvolve cos30±andsin 3u~[40]:

L
x = — {e~[(1— a)sin oS... + ~asin 3u_+ sin o÷]41T

— e
2[(1 a)Cos0— + ~acos3g...+ coso÷]— 213 [a (1— a)]

112cos0_}. (12.8)

Kibble andTurokhaveshownthat for 0<a <1 theseloops neverintersectthemselves.The projection
of one suchloop (a = 0.7) on the xy-planeis shown in fig. 1 at times t = 0 and t = L/4. At t = L/4 the
loop developstwo cuspsandthevelocity of light is reachedat thepeaks.(All loop solutionsstudiedso
far, excludingdegeneratecaseslike a circular loop, developcuspsatthe pointsof luminalmotion.)

Turok [39]hasstudieda larger,two-parameterfamily of solutionswith trigonometricfunctionsof 0±

and30~andhasfoundthat a largefractionof theparameterspaceis occupiedby never-self-intersecting
loops.To makethis statementprecise,onehasto definea measurein theparameterspacecorrespond-
ing to theactualdistribution of ioop configurationsformedin theearlyuniverse.This hasnot yet been
done.At this time we canonly saythat the resultsof refs.[39,40] do suggestthat asubstantialfraction
of loop trajectoriesneverself-intersect.Thedecaymechanismsfor suchloops arediscussedin sections
14 and 15.
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Fig. 1. The xy.projection of the loop (12.8) with a = 0.7 (a)at t = 0 and (b) at t = L/4.

13. Intercommuting

Intersectingstringscanintercommute[3] (or changepartners)asshown in fig. 2. This processplaysa
crucial role in theevolution of strings, and it is importantto know the intercommutingprobability,p.
Strings are describedby classical solutions of the field equations,and one can expect that their
intercommutingoccurs at the classical level as well. Then the intercommuting process is totally
deterministic,andtheword“probability” refersto averagingovercollision anglesandrelativevelocities
of thestrings.

It appearsthat the only way to estimatep is to find numerical solutionsof the nonlinearfield
equationsdescribingcolliding strings. Suchan analysishasbeenrecentlydoneby Shellard[42] for the
caseof global stringsof themodel (7.1). He consideredtwo stringsatright anglesmoving towardsone
anotherwith a relative velocity up to 0.5 c. The result is that the strings intercommutein all cases
considered.It may well be that intercommutingis angle-and model-dependent,but theseresultsdo
suggestthat intersectingstringsintercommutewith high probability.

Shellardhasalso studiedintercommutingof walls with walls boundedby strings (see fig. 3). The
result is, again,that intercommutingoccurredin all casesconsidered.

Let us considerthe effectsof intercommutingon oscillating loops of strings. If a loop of massM
self-intersects,it breaksinto two loops, which we shall assumeto haveroughly equalmasses.These
daughterloops can be of self-intersectingor non-intersectingvarieties,and we can introduce the
probability, w, for a ioop to benon-intersecting.Let usfirst considerthe casewhen w 0 and the loops
rapidly decay into a cascadeof smaller and smaller loops. When the size of the loops becomes
comparableto thestring width S— ~‘ (their massbeing —mi), they decayinto elementaryparticles.

At eachintercommuting,acertainfractionfof theenergyof thesplitting loop will go into the kinetic
energyof daughterloops. Thus,aftern splittings we have—‘2~loops of energy

(13.1)

X
WALL ___________

“SI RING

iT
Fig. 2. Intercommutingstrings. Fig. 3. A wall boundedby string intercommuteswith anotherdomain

wall.
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andrest mass

m~— ((1 —D/2)~M. (13.2)

The loops decaywhenm~ m~,and thenumberof stepsrequiredis

ln(M/77)
(13.3)

ln(2/(1 — f))

If f is not too small(f> n;1) thesmallestloops and the resultingparticleswill be extremelyrelativistic:

— e~/m~—(1—f)~”. (13.4)

Theoscillation period of the loops in theirrespectiverest framesis t~— m~/2/2,but in the frameof the
initial loop t~ y~t~2”M/2~.Hencethe timescaleof thewhole decayprocessis

t—~t~--M/p.. (13.5)

Let us now turn to the casewhen there is a nonzeroprobability for daughterloops to form in
non-intersectingconfigurations,w � 0. Partial decayof an ensembleof loops with initial masses—M
will then give rise to a spectrumof non-intersectingloops with masses~M The averagenumberof
loopswith mass—2~~Mis —2~(1— w)~wN,whereN is thenumberof original loops. (Smallerloops of
thespectrumwill be relativistic,and2”M shouldbe regardedastheir energy,not the restmass.)The
fraction of total masscarriedby such loops is w(1— w)”. For w not too small,most of the mass is in
the loops comparablein sizeto theoriginal ones.

14. Gravitational radiationfrom loops

Thedominantenergy-lossmechanismfor non-intersectingloopsis thegravitationalradiation.Loops
of size R have a typical frequency w R1, and one can estimatethe radiation rate using the
quadrupoleformula[12]:

dM/dt— —GWR4w6--—G~2. (14.1)

Here,M /2R is the massof the loop. The lifetime of the loop is then

M/IA~ul— R/G~. (14.2)

If theenergyscaleof stringsis ~ ~ m~,wherem~— 10~GeVis thePlanckmass,then

(n/m~)241. (14.3)

For a typical grandunification energyscale,17 — 1016GeV andGp~— 10_6.
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The motion of loops is relativistic, andwe haveseenthat at onemomentduring theperiodcertain
pointsof the loop actually reach the velocity of light. This indicates that the quadrupoleformula is
quantitatively incorrect. A more reliable estimateof the radiation rate can be obtainedusing the
following generalequations[43]

(14.4)

I~~!=~ k) T~”(w~,k)—~!T~(u~,k)12}. (14.5)
dfl IT

Here,dP~/di1is the intensityof radiationatfrequencyw~= 4irn/L per unit solid anglein thedirection
of k,IkIw~and

T’~’(o~,k) = ~ Jdt exp(iw~t)J d3x exp(—ik . x) T~’(x,t) (14.6)

is the Fourier transformof the string energy-momentumtensor(11.19).Equations(14.4)—(14.6)give the
gravitationalradiationfrom a periodicsourcewith period T = L12 to the lowestorder in G andwithout
any furtherassumptionsaboutthesource.The total powerof the radiationis

M=—~P~. (14.7)

Turok [39] has applied this formalism to simple string configurationswhich, however, have little
resemblanceto actual loop trajectories.A numericalcalculation of the radiatedpowerfor the exact
loop solutions found by Kibble and Turok hasbeendone in ref. [41].Here we shall summarizethe
results.

The energylossper unit time by an oscillating loop is given by

M —yG~, (14.8)

where y dependson theparticularloop trajectory,but is typically 100. Figure 4 showsy asa function

V
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Fig. 4. Gravitational radiation power for the family of loops (12.7).
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of theparameter4’ for the family of solutions(12.5).The minimal valueof y in this family of loops is
—50. Similar resultsareobtainedfor non-intersectingloops foundin refs. [39,40].The largevaluesof y
arepartly due to thesignificantcontributionof high frequencies.

An asymmetricloop configurationcanradiatemomentumand acceleratelike a rocket.A numerical
calculationfor severalasymmetricloops gives [41] P1 — 10 G,.~2.With such an acceleration,a loop
would develop a velocity v (PIM) r 0.1 by the end of its, lifetime. However, due to angular
momentumradiation,thedirection of P graduallychanges.With L G~2R, the loop rotatesby ~ in
At— (G~)~’~R.The velocity developedin time At is— (G~)”2.Besides,in thecosmologicalcontext,
the “gravitationalrocket” effect is counteractedby thegravitationaldragdueto small-anglescattering
of particles[20,21].

15. Electromagneticradiation

For macroscopicallylargeloops,only emissionof masslessparticlescanbe important.If R is thesize
of the loop, then its typical frequencyof oscillation is w R~1,and theemissionof particleswith masses
greaterthan R1 is suppressed.Assumingthat neutrinoshavenonvanishingmasses,the only process
competingwith thegravitationalradiationfor macroscopicloops is theelectromagneticradiation.

Thestringsarecharacterisedby theexpectationvaluesof a Higgsfield 4’ anda gaugefield WM.Since
(4’) is invariant underoperationsof the unbrokensubgroupH, including the electromagneticgauge
transformations,it follows that 4’ is electricallyneutralanddoesnot coupleto theelectromagneticfield
AM. Couplingsof the form W2A and W3A are also absent[44]becauseof the antisymmetlyof the
groupstructureconstants.Thus thereis no interactiontermcouplinga singlephotonfield to the fields
of the string. Two-photonemissioncan occur due to the quartic couplings, W2A2, and this is the
dominantradiationmechanism.(Couplingsof this form arepresentif the generatorscorrespondingto
thefields WMand AM do notcommute.)The correspondingdiagramsareshownin fig. 5. Theradiation
rate hasbeen estimatedin ref. [44]by first studying the photon emission from small oscillationson
straight strings (the small parameterbeing wa, where a is the amplitude of oscillations) and then
extrapolatingthe resultsto thecaseof largeamplitudes(Wa — 1). Theresult is

M,. -- —R2 (15.1)

whereR is thesizeof the ioop.The answeris independentof thegaugecouplingg, sincethegaugefield
of thestring is proportionalto g~’.

Photonemissioncan alsooccurdue to vacuumpolarizationprocesses.An exampleof a diagramwith
afermion loop is shownin fig. 6. Suchdiagramsturn out to be suppressedby powersof SIR, whereS is
the thicknessof thestring.

Comparingeq. (15.1)with thegravitationalradiationrate (14.1),weseethat for macroscopicloops of
massM> m~ 10~g thegravitationalradiationis thedominantenergylossmechanism.

Fig. 5. Diagramsfor two-photon emission from an oscillating string. The solidlines representthe classicalgauge field of the string, the barred solid line
representsother heavy gaugefields, and wavy linesrepresent photons.
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y
Fig.6. Vacuumpolarization diagramfor electromagneticradiation from a string. Thedashed line representsthescalarHiggs field of the string, andthe
directed solid linesrepresent fermions.

16. Stringsin expandinguniverse

In this sectionwe shall derivetheequationsof motion and discussthebehaviorof thestringsin the
Robertson—Walkermetric (2.1). It will beconvenientto usetheconformaltime variable r, dr = dt/a(t),
sothat themetric takesthe form

ds2= a2(r)(dr2—dx2—dy2—dz2). (16.1)

In a radiation-dominateduniverse (a cc t”2) we have r cc tU2, a(r) cc r and in a matter-dominated
universe(a ~ t213) r cc ~1”3, a cc

Onecanderivetheequationsof motionof a stringfrom the action (11.3)and thentry to solvethem
analytically or numerically. The casetractableanalytically is that of small perturbationson a straight
string.

Let us first choosethegauge

~°=r, ~1=x (16.2)

[comparewith (11.9)] and assumefor simplicity that thestring movesin the (x, y)-plane,z= 0. Then

thestring trajectoryis describedby one functiony(x, r) and the stringLagrangiantakesthe form
L = —/h [g (2)]1/2 = —~ a2(r) (1+y~2— $~2)1/2, (16.3)

wheredots and primesrepresentderivativeswith respectto r and x respectively.The corresponding
equationof motion is

(~_+2~.)[y(1 + y’2— j2)~1’2]= ~. [y~ (1 + y2 ,)~2)_i/2] (16.4)

Obviously, a straight line, y = const., is a solution. A straight string remainsstraight and is simply
stretchedby expansion. Taking y =0 as the unperturbedsolution, we shall now considersmall
perturbationson a straightstring.

In a radiation-dominateduniverseandassuming

y’~,j~24l, (16.5)
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eq. (16.4)becomes

9+2r~~—y”—0 (16.6)

andplanewave solutionsof the form y(r)&~ areeasilyfound [38]:

y(r) = A1 ~ sin(kr), (16.7)

y(r) = A2f
1 cos(kr). (16.8)

Here, A
1 and A2 are constantcoefficients. It should be rememberedthat x and y are co-moving

coordinatesand2IT/k is theco-movingwavelengthof thewave.The physicalwavelengthA =
2IT a(r)Ik

grows proportionallyto thescalefactor.The quantitykr — tIA givesthe ratioof thehorizon size to the
wavelength(by orderof magnitude).

Let usfirst considerthecasewhenboth thewavelengthand theamplitudeof thewave on a stringare
muchgreaterthanthehorizon: k’r 4 1, A ~ ~ In this case,solutions(16.8)do not satisfy theconditions
(16.5)andonly solutionsof the form (16.7)shouldbeconsidered.In the limit kr —~0, (16.7)reducesto a
constant.The string doesnot movein co-movingcoordinates,which meansthat it is beingconformally
stretchedby the expansion:both amplitudeand wavelengthgrow like a(r), the shapeof the string
remainingunchanged.

Now considertheoppositelimiting casewhen both the amplitudeand the wavelengtharesmaller
than the horizon: kr ~ 1, A4 r2. In this case,the wavelengthstill grows like a(r), but the physical
amplitudeof the wave, a(r) A r~,remainsconstant.As the ratio of the amplitudeto thewavelength
decreases,thestring becomeslessandlesscurved.Similar resultscanbeobtainedin thegeneralcaseof
a power-lawexpansion:a(r) cx ~a [47].

Extrapolatingthis perturbativeanalysisto the case of strongly curvedstrings, one expectsthat, in
general,waves bigger than the horizon are conformally stretched,while the irregularitieson scales
smaller than the horizon are smoothedout [38,12]. Numerical calculationsof refs. [45,46] are in
qualitativeagreementwith this picture.

To give someexamplesof thebehaviorof strings in theearlyuniverse,first considera circular loop
of initial radiusR

0 muchgreaterthan the horizon at time t0, R0 ~‘ t0, assuminga(t) cc ~ The loop is
stretchedlike thescalefactor,

R(t) = (t/t0)
112R

0 (16.9)

until it comeswithin thehorizon.This happensat t = th suchthat R(th)— th:

thRO/tO. (16.10)

At this time,the radiusof theloop beginsto decrease.Whentheioop is muchsmallerthan thehorizon,
effectsof expansionareunimportant,and it collapsesto a pointwith relativistic speed,just like it would
in flat space—time.

As anotherillustration, considera largeirregular loop havingoverall sizeR0 ~ to, but locally having
the shapeof a 3-dimensionalrandomwalk of step ~ — t0. Thenthe initial total length of the loop is
4— ~ (As we shall see later, strings formed at a phasetransition in the early universehave
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Brownian shapes.)In thecourseof expansionthe size of the loop is conformallystretchedlike in eq.
(16.9)until the loop becomessmaller than thehorizon at t th. Since irregularitieson scalessmaller
thanthe horizonaresmoothedout, at any time t4 th the loop hastheshapeof a randomwalk of step

t, and its length is

f(t) — R2(t)/t— const. (16.11)

if theuniverseis radiation-dominated,and

e(t) cc (16.12)

in a matter-dominateduniverse.By the time the loop comeswithin the horizon it losesits Brownian
appearanceand is relatively smooth.Whenthesizeof the loop is muchsmallerthanthehorizon,effects
of expansioncan be neglected,and wehavea regularoscillating ioop.

To concludethis section,I would like to give anotherform of theequationsof motion for a string in
expandinguniverse,which is useful for computercalculations.A convenientchoiceof gaugeis

~°r x~x’=0 (16.13)

and theequationsof motion in this gaugeare [45]

.3 + 2 (a/a)(1 — v2)V = ei(e_lx?)I (16.14)

é = —2(â/a) e v2. (16.15)

Here, V = E, ~= Ix’I (1 — v2)~”2,dots and primesare derivativeswith respectto r and ~, respectively.
Equation(16.15)is not an independentequation;it follows from eqs.(16.14)and (16.13).This equation
describeshow theenergyof thestring

M(T) =
1a a(r)J~d~, (16.16)

changeswith time. If the string is practically at rest with respectto local co-moving frames(v = 0),

� const. andits massgrows like a(t). For a rapidly movingstring e decreasesand the rate of growth
of theenergyis reduced.This can beunderstoodin termsof theusualredshiftof thekinetic energyin
expandinguniverse.

Note that eqs. (16.13) do not fix the gaugecompletely. The remaining gaugefreedomincludes
reparametrizationsof the form C—* ~ In flat space—time(a = 0) é = 0, and eqs.(11.14), (11.15)are
obtainedfrom (16.14),(16.15)if we choose� = 1. It is clearthat thegauge(11.14)cannotbe imposedin
expandinguniverse,since thesecondof eqs.(11.14) is inconsistentwith (16.15).Equation (16.14)was
usedin thecomputercalculationsof refs.[45,46].

17. Dynamicsofglobal strings

As shown in section7, the massper unit lengthof a straightglobal string is
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/z ~2ir,~2ln(R/S) (17.1)

and divergesin the limit of an infinite cut-off radiusR. If we have two parallelstrings with opposite
sense of AG (so that AG = 0 for a contour enclosingboth strings), then the role of the cut-off
radiusis playedby thedistancebetweenthestrings, and the two stringsare attractedto oneanother
with a force(per unit length)

F = d~/3R— 2in
7

2/R. (17.2)

This forcecan be thoughtof as due to the interactionof stringswith a long-rangeGoldstonefield, 0.
Strictly speaking,both the Goldstonefield and the string aredescribedby the samecomplexfield 4’
with the Lagrangian (7.1). However, for macroscopicstrings, it may be possible to representthis
Lagrangianasa sum of realscalarfield (0) andstringtermsplusan interactionterm.To my knowledge,
this hasnot beendone,and I am not awareof any quantitativeresultson thedynamicsof global strings.
Somequalitativeconclusionsconcerningthe evolution of global strings can still be reachedusing the
following observation.

Weshall seein chapter4 that cosmologicalstringshaveBrownian shapeswith typicalcurvatureradii
comparableto the distancebetweenthe strings. The force per unit length dueto tensionin curved
strings is F ~/R and is greaterthan the interactionforce (17.2)by a largefactorIn(R/S)— 100. This
suggeststhat the dynamicsof global strings is dominatedby tension, and thus should not be much
different from that of local strings.The main differencecanbeexpectedin thebehaviorof closedloops.
In the caseof global strings,closedloop trajectoriesareprobably not periodic, and theremay be no
loops which neverintersectthemselves.String configurationscorrespondingto non-intersectingloops of
local strings will be graduallymodified by the forceof interactionbetweendifferent partsof the loop,
and may intersectthemselvesafter —100 oscillations.Thus, one’s best guessseemsto be that the
lifetime of global stringloops is

r—100R. (17.3)

18. Dynamicsofdomain walls

The action for a domainwall canbe derivedin thesamemannerasthestring action in section11:

S=_uJ [g(3)]l/2d3~. (18.1)

Here, o is the wall tension, ~ ~ and ~2 are arbitrary parameterson the wall and g(3) is the
determinantof themetrictensoron the3-dimensionalhypersurfacedescribedby thewall in space—time,
g~2= ~ x~.It canbe shownthat eq. (18.1)is equivalentto

s=_~fdtJds(1_v~y12, (18.2)

where v
1 is the transversevelocity of the wall anddSis thesurfaceelement.
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We canusethegaugefreedom~a —~ j’~(~)to fix theparameters~‘ as

= t, ~ = ~, = y. (18.3)

Thenthemotion of thewall is describedby one functionz(x,y, t) and theaction takesthe form (in flat
space—time)

S= —a-fJJdt dxdy (1+z~2+ z2— i2)~. (18.4)

The correspondingequationof motion is

(y.z)— ~- (yz~)— ~— (yz~)= 0 (18.5)

where y = (1 + z~2+ z~— ±2)_h/2. It is easilycheckedthat

z=f(x±t) (18.6)

solves eq. (18.5)for arbitraryf. Suchsolutionsdescribeplanewavesof arbitraryshapepropagatingon
the wall with thevelocity of light.

Theequationof motion for a wall in expandinguniverse(16.1) is

(~-+3~)(y±)—~-(yzj—~-(yz~)= 0. (18.7)

For small perturbationson astraightwall, z= z(r) exp(ik . x), eq. (18.7)takesthe form

~‘+3(â/a)±+k2z=0. (18.8)

As in thecaseof strings, it canbeshownthat wavesgreaterthanthehorizonareconformallystretched

(z(r)— const.)andwavessmallerthan thehorizon aresmoothedout (z(r) cc a~312)[47].

19. Gravitationalfield ofstringsand walls

The gravitational field of strings and vacuumdomain walls is very different from that of regular
massiverods and planes[14].The differenceis easily understoodif we note that for a static matter
distributionwith energy-momentumtensor

= diag(p,—F
1, —F2, —F3) (19.1)

the correctNewtonianlimit of Einstein’sequationsis

V
24’=4irG(p+P

1+P2+P3). (19.2)
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For nonrelativisticmatterF, 4p and V24’ = 4irGp. The energy-momentumtensorof a straight string
(5.10) hasP

1 = F2 = 0, P3 = —p, and eq. (19.2)suggeststhat straight strings produceno gravitational
force on surroundingmatter.For a domainwall [seeeq. (4.5)] P1 = P2 = —p, P3 = 0 andeq. (19.2)gives
V

24’ = —4ITGp, indicating that thegravitationalfield of domainwalls is repulsive.
The solution of Einstein’s equationsfor a string has been found in ref. [14] assumingthat the

parameterGp~is small, which is thephysically interestingcase(,u is the string tension).Largevaluesof
G,a and the internalmetric of thestring arediscussedin ref. [16].Outsidethe stringcorethemetric is

ds2=dt2—dz2—dr2—(1—4G~)2r2dçb2. (19.3)

A coordinatetransformation4” = (1— 4G~cs)4’brings themetric to a locally Minkowskian form, but now
theangle4” changesfrom 0 to (1—4Gj~)2IT.Thus, eq. (19.3)describesa “conical space”,that is, a flat
spacewith a wedgeof angularsize 8ITG~taken out and the two facesof thewedge identified. In the
coordinates(t, z, r, 4”) the geodesicsare just straight lines, and we see immediately that a particle
initially at rest relative to the string will remain at rest and will not experienceany gravitational
attraction.

Although the metric (19.3) is locally flat, its global structureis different from that of Minkowsky
space.The most striking effect of this differenceis the formation of double imagesof objectslocated
behindthestring [14]. This is illustrated in fig. 7. The light raysfrom the quasarintersectbehindthe
string andtheobserverseestwo imagesof thequasar.If � andd arethedistancesfrom thestringto the
quasarand to theobserver,respectively,thenthe angularseparationbetweenthe imagesis [15,16]

34’ = 8ITG~�(d+ t~’ (19.4)

assumingthat G~4 1 and that thestring is perpendicularto the line of sight.
Gravitational lensing by a string is a classical analogueof the Aharonov—Bohm effect [48].

Space—timecurvatureis confinedto thestringcore,but its effect is “felt” by thephotonspropagatingin
flat space—timeregionaroundit. As in the Aharonov—Bohmcase,a Minkowskiancoordinatesystemcan
be chosenin any region on oneside of thestring, but suchsystemsdo not exist in regionssurrounding
thestring.

It should be emphasizedthat all this discussionappliesonly to portions of strings which can be
regardedas straight. A closedloop of sizeR producesa regularSchwarzschildfield at distances~ R.

The solutionof Einstein’sequationsfor a planedomain wall with energy-momentumtensor

T~= a-diag(1,1, 1, 0)5(z) (19.5)

Fig. 7. Theconicalspacearoundastraightstringcan beobtainedfrom a Euclidean spacebycutting out a wedgeof angularsize8irGpandidentifyingthe
exposedsurfaces.Light rays emitted by thequasarintersectbehindthe string, andthe observerseestwo imagesof thesamequasar.
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hasbeenfoundin refs. [49,50]:

ds2= (1— 1(z)2dt2 — dz2— (1— 1(z)2e2kf(dx2+ dy 2), (19.6)

where K = 2ITGa-. Note that this solution is time-dependent:no static solutionswith T of the form
(19.5)exist. In theplaneof the wall (z = 0) themetric is that of a (2+ 1)-dimensionalde Sitter space,
while the (z, 1) part of eq. (19.6)is the (1+1)-dimensionalRindler metricdescribinga flat spacein the
frameof referenceof a uniformly acceleratedobserver.An observerat z= 0 will seetest particles
moving away from the wall with accelerationa = K = 2irGa-, in agreementwith theNewtoniananalysis.

The metric (19.6)hasan eventhorizon: an observerat z = 0 neverseesparticlesand light crossthe
surfacesz = ~ On theotherhand, it takesa finite propertime for a particleto reachIzi = K1. In
addition, usualde Sitter horizonsof radiusK1 exist in the (xy)-plane.The singularity at z~= ±K_i is
not a true singularity of the metric. In fact, it can be shown that the metric (19.6) is locally flat
everywhereexcepton the wall itself.

Just like in the caseof strings,it is importantto realizethat theseresultscanbeapplieddirectly only
to plane domain walls. The gravitational field of curved, and especiallyclosed walls can be very
different.For example,thegravitationalfield outsidea collapsingsphericalwall [50]is describedby the
Schwarzschildmetric.

20. Interaction with particles

To analyzethe cosmologicalevolution of topological defects,it is important to know the force of
friction experiencedby moving walls andstringsdue to theirinteractionwith particles.

A domainwall is transparentto someparticles,but may bea nearlyperfectreflectorfor someother
particles.The wall is formedwhenthe temperatureof theuniverseis T — ~, where(4’) = ~ is theVEV
of thecorrespondingscalarfield. At later times, when T 4 ,~,the typical wavelengthof the particles,
A — T1, is muchgreaterthanthe thicknessof thewall, 8— ,~‘; hencewe cantreatthe wall asinfinitely
thin. Considera multiplet of fields ~/Ja suchthat theVEV of 4’ gives masses—i’ to somemembersof the
multiplet, other membersremaining massless.In general, different componentsof t//a will acquire
masseson the two sidesof the wall (sincetheVEVs of 4’ aredifferent). Everetthasshown[51]that for
thecomponentswhosemasschangesacrossthe wall theprobability of reflectionis large(providedthat
A>>S).

We cannowestimatethe force of friction acting on adomainwall moving with velocity v relativeto
the radiation.Forsimplicity weshall assumethat the wall is not ultrarelativistic,so that (1 — v2)~1’2— 1.
The densityof particlesper spin degreeof freedomis n — IT2T3, theaveragemomentumtransferper
collision is — Tv, andwe can write for the forceperunit areaof the wall [3]

F~—N~nTv— IT2NWT4V, (20.1)

whereN~is thenumberof particlestateschangingtheirmassacrossthewall.
Scatteringof particleson stringshasbeenstudiedby Everett[52].He considereda particlemultiplet

~/1awith a massmatrixM~,(0)changingaroundthestring. Heavy fields of themultiplet havemasses—
and are absentfrom the thermalbathat T 4 ~. Everetthasfound that the scatteringcross-sectionof
light membersof themultiplet per unit length of thestring is given by
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a- — ir2/k ln2(kS) (20.2)

and is practically insensitiveto the internal structureof the string. Here, k is the momentumof the
particle (k — T) and S is thewidth of the string (8 — i~~1).The forceof friction per unit length of a
moving stringis then [52]

F~— N~T3v/ln2(Th), (20.3)

whereN~is thenumberof light particlesinteractingwith the fields of thestring.
Finally, to discussthe evolution of monopolesconnectedby strings, we shall need the force of

friction acting on a moving monopole.This is given by [10]

FmT2V. (20.4)

4. EvolutIon of topologicaldefects

21. Domain walls

In this section,we shall discussthe configurationof thedomainwalls at the time of formation and
their further cosmologicalevolution. The initial shapeof the walls right after the phasetransitionis
determinedby the randomvariation of thescalarVEV, (4’). Hence,one expectsthe walls to be very
irregular, randomsurfaceswith a typicalcurvatureradius —~ where ~is thecorrelationlength of (4’).
To learn moreaboutthe systemof walls atformation, onecan usea Monte Carlo simulation [53,54].

Takea cubicvolume of sizeN~divided into N3 cubiccellsandassignto eachcell a number+ 1 or—1
[correspondingto (4’) = ±~ in the model (4.1)] at randomwith equal probability. We shall call the
correspondingcells plus-cellsand minus-cells,respectively.The walls lie on the boundariesbetween
plus- andminus-cells.

To characterizethe system of domain walls, one can look for the size distribution of clustersof
connectedplus-cells.(Two cells areconnectedif they havea commonface; thesizeof a clusteris the
numberof cells in thecluster.)Of course,thedistributionof minus-cell clusterswill besimilar. This is a
typical problemof percolationtheory [55],which is concernedwith statisticalpropertiesof systemslike
ours for various types of latticesat different concentrationsof plus-cells, p. The centralconcept of
percolationtheoryis the critical concentration,Pc, at which an infinite plus-clusterfirst appears(in an
infinite lattice). The value of Pc is different for different lattices, but in all 3-dimensionalcasesit is
smallerthan 0.5. In our case,p = 0.5, and thus the systemis abovethe percolationthreshold.(For a
cubic lattice, Pc = 0.31.)

The following factsareknownaboutthepropertiesof percolatingsystemsat p> Pc: (1) thereis only
one infinite plus-cluster(andone infinite minus-clusterif p < l~Pc)and(2) thenumberdensityof finite
clusters,it

3, decreasesexponentiallywith their size,s:

cc s~exp(_asV
3). (21.1)

Here,thenumericalcoefficientsr and a dependon p.
The implicationsof theseresultsfor the systemof domainwalls are straightforward.The systemis
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dominatedby one infinite wall of very complicatedtopology [3]. In addition, thereare somefinite
closedwalls. Most of themhavedimensionsR — ~. The probability of finding closedwalls with R ~
exponentiallydecreaseswith R, ln n cc —R2. In a typicalsimulation on a latticeof sizeN = 40, —98% of
all plus-cellsand—87% of the total wall areabelongto the “infinite” cluster[54].

Onceit is formed,howwill thesystemof walls evolve?Tensionin convolutedwalls, a-, producesa
forceper unit areaf — a-/R, where R is the meancurvatureradius.As a result, isolatedclosedwalls
smallerthan the horizon (R 4 t) will shrink anddisappear.In vacuum,a collapsingclosedwall would
developkinetic energy and would keep oscillating, just like a loop of string discussedin section 12.
However,themotion of the walls is dampedby the forceof friction (20.1). Omittingnumericalfactors,
the retardingforce per unit areais F.,. — T4v — v/Gt2, whereI haveused

T4—p—-1/Gt2 (21.2)

[seeeqs.(2.4), (2.8)]. For sufficiently largewalls the velocity v is determinedby the balancebetween

tensionand friction, f — F’,,:
v—Ga-t2/R (21.3)

and the typical dissipationtime is

td — R/v— R2/Ga-t2. (21.4)

Whenthe wall shrinksto R — Gal2,its motion becomesrelativistic, theenergylossrateis M — —F~R2v
andtheenergyof the wall is dissipatedon a timescaleM/IMI — Ga-t2. From eq. (21.4)wesee that closed
walls of sizesmallerthan

R(t)— (Ga-)u213/2 (21.5)

disappearin less thanoneHubble time (t). Similarly, it canbe argued[3] that small-scaleirregularities
of the infinite wall aredampedout, so that thecharacteristicscaleattime t is given by (21.5).The scale
grows like t~andbecomescomparableto thehorizonat

t~—(Ga-)~~. (21.6)

The contributionof the walls to theenergydensityof theuniverseis Pw — a-R2/R3— aiR, so that for
t<t*,

Pw/P — (t/t~)1’2. (21.7)

At t — t*, Pw — p and theuniversebecomesdominatedby domainwalls. For t> t*, thecurvatureradius
of the walls is greaterthan (Gu)~1and the metric nearthe walls is given by eq. (19.6). Space—time
becomesvery inhomogeneousand developshorizonsat distances—(Go)~’from the walls. A domain
wall stretching across the present horizon would introduce a density fluctuation op/p— Go-t~~

5—

10
60(~~/in~)3and a comparablefluctuation in the temperatureof the microwavebackground.Obser-

vationsconstrain6TIT to be ~ iO~~and thusmodelspredictingtopologically stabledomainwalls with
~ 102 0eVshouldbe ruledout [9,3].
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This rule is not without exceptions.If the formation of domain walls is followed by inflation, the
walls canbe inflated awayfar beyondthepresenthorizon.

As anotherexample, considerthe casewhen a discrete symmetry is broken at T = T1 and then
restoredat T = T2. An exampleof thissort was discussedat the endof section9. In thiscase,the wall
tensionchangeswith temperature[14].Omitting numericalfactorsand couplingconstants,

cr—T
3, (21.8)

andeq. (21.7)gives

Pw/P— (t~It)2’4 (21.9)

where t.~,— iO~s is the Planck time. Hence, in models of this type, the universe neverbecomes
wall-dominated.

Yet anotherpossibility is to allow a smallbias, so that oneof the two vacuumstatesseparatedby the
walls has slightly smaller energy density than the other: Ap~= � � 0 [9,3]. This is the caseof an
approximatediscretesymmetry.Regionsof higher density vacuumtendto shrink, the corresponding
force per unit areaof the-wallsis —e. The energydifferenceAp becomesdynamically importantwhen
this force becomescomparableto the force of tension,f—aiR. For walls to disappear~this hasto
happenbeforethe walls dominatetheuniverse,that is, for R <(Gu)’. This requirementgivesa lower
boundfor the asymmetrye [14]

e>Ga-2. (21.10)

22. Strings

At the time of formation, oneexpectsstringsto havethe shapeof randomwalksof step—~ with a
typical distancebetweenthe neighboringstring segmentsalso —~. Here, ~ is the correlationlengthof
the Higgs field 4’. The statisticalpropertiesof the systemof strings at formation canbe studiedusinga
Monte Carlo simulation.This hasbeendonein ref. [54] usingthe following prescription.

The simulation is donehaving in mind the U(1) model(5.2) in which the Higgs VEV is (4’) = ~ e’°.
The phase0 is randomlyassignedat the verticesof a cubic lattice. For simplicity the phaseat the
verticesis allowedto takeonly threevalues:0 = 0, 2IT/3, 4ir/3 (assumingthat 0 variessmoothlybetween
thevertices).The sizeof thecubiccell is identifiedwith thecorrelationlength ~. A stringpassesthrough
the face of a cubic cell if 0 changesby 2IT when traced aroundthe face. It can be checkedthat the
constructionis suchthat all stringsareeitherclosedor endat theboundariesof the lattice.

As expected,one finds [54]that long strings areBrownian,so that the length of stringbetweentwo
pointsseparatedby adistanceR ~ ~ is

(22.1)

Resultsof thesimulationfor varioussizesof the latticeindicatethat a largefraction (—80%)of the total
string length is due to infinite strings. The remaining strings are closedloops with a scale-invariant
distribution
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dn — R4 dR. (22.2)

Here, R is the characteristicsize of the loop definedas R = AX
1 + AX2+ AX3, where AX, are the

extentsof the loop alongthecorrespondingaxes.The length of theloop is relatedto R by eq. (22.1).dn
is thenumberof loops with sizesfrom R to R +dR perunit volume.

We now turn to theevolution of the systemof strings[3, 12, 38, 45, 54, 56, 57]. At very early times
themotion of stringsis heavily dampedby theforce of friction (20.3).For a rough estimatewe canomit
thenumericalandlogarithmic factorsin eq. (20.3)andwrite

F~—T
3v. (22.3)

Tensionin convolutedstringsproducesa force per unit lengthf — p./R, where~ — ~2 is the linear mass
density (and tension)and R is the local curvatureradius of the string. The velocity of the string is
determinedby f—F~:

v — ~/T3R. (22.4)

(I am using NewtonianphysicsassumingR 4 t.) Small-scaleirregularitieson the stringsare dampedout
by friction, andthe typical curvatureradiusof stringsat time t is R(t) — vt. Substitutingthis in eq. (22.4)
and usingeq. (21.2) weobtain

R(t)— (Gp~)1’2(t/t~)114t. (22.5)

Closedioopsof size smallerthanR(t) shrink anddisappearin less than oneexpansiontime.
R(t) becomescomparableto thehorizonat

t~—(G~)2t~. (22.6)

For t> t* the characteristicscaleof the stringsis R(t) — t. [Stringscannotbe smoothedout on scales
greaterthan t, sincethat would requiresuperluminalvelocities.]Theforceof tensionis nowf — ~t/t and
the forceof friction is F. — (u/t) (t/t~)1’~.Hence,for t ~ t* theeffectsof friction becomenegligible. For
a typical grandunified value ,~— 10160eVwe haveG~— 10_6 and t* — 1031 s.

Expansionof the universestraightensout long strings on scalessmallerthanthe horizon(so that the
persistencelength of Brownian stringsis — t) andconformallystretchesthem on scalesgreaterthanthe
horizon.It hasbeenshownin section16 that theoverall effect of expansionon largeBrownian loopsin
a radiation-dominateduniverseis that the length (and thereforethemass)of the loop remainsroughly
constant.Similarly, it canbe arguedthat theco-movingmassof infinite strings remainsunchanged.This
seemsto indicatethat the mass density of string scaleslike Ps cc a3, while the radiationdensity is
p cc a4. Hence,ps/p cc p112 and the universebecomesstring-dominated.This, however,is not our final
conclusion,sincetwo importantphysicaleffectsarestill to be takeninto account.Theseareintercom-
muting and gravitationalradiation.

Pairsof stringsintercommutingat two points can form closed loops. Loopscan alsobe formedby
self-intersectionof individual strings (seefig. 8). Theseprocessesareimportant,sinceloops eventually
radiateaway theirenergyandsavetheuniversefrom string domination.

Let v(t) be the typical numberof segmentsof infinite strings (or very largeclosedloops) per horizon
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0~0
(a)

>e.>o
(b)

Fig. 8. Closed loop formation by intercommuting strings.

volume — t
3. Then the density due to infinite strings is p,,,,— v,ar2 and each segmenthasabout v

intersectionsper Hubble time. (At t> t* stringsmovewith relativistic speeds,v — 1.)The totalnumber
of intersectionsin a volume t3 per time intervaldt is — i.’2 ~i dt and the rateof loop formationper unit
volume is

dn/dt— pv2r4. (22.7)

Here,p is theprobability of ioop formation per intersection(it is, of course,relatedto the intercom-
muting probability). The typical curvatureradius of strings at time t is — t, and we expect that loops
formedby their intercommutingwill havesize —t. Then, by energyconservation,we musthave

~ 3 dn
(22.8)

The secondterm on the left-hand side describesthe dilution effect due to expansion,a cc ~112~This
equation does not take accountof the effect inverseto the loop formation. If a segmentof string
intercommutesat one point with a closed loop, the loop gets absorbedinto the segment.A more
detailed analysis done by Kibble [56] indicates that inclusion of this effect does not change the
qualitativeconclusions.The reasonis that theprobabilityfor a loop smallerthanthehorizonto be hit
by a stringrapidly decreaseswith time, anda largefraction of loops survive.

Fromeqs.(22.7)and (22.8)we obtain the following “kinetic” equationfor zi(t):

dz’/dt— v/2t— —pv2/t. (22.9)

We seethat v tendsto decreaseif v ~-p1 and tendsto increaseif v <<p~.Thus,v — p~1is a stable
solution.
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With intercommutingprobability—1, it is naturalto assumethatp — 1. Thenthereareno morethan
a few segmentsof infinite stringsper horizon volume at any time [3],andeq. (22.7)tells us that about
oneloop of size —t is formedperhorizonvolume per Hubble time [12].

The densitydue to infinite stringsis p~— ~a/t
2and,usingeq. (3.8),

p,,,~/p—30 Gsa. (22.10)

Let us now seewhat happensto theclosedloops.
Loops of size R are formed at t — R. At that time, the numberdensity of loops is (assuming

p — ii — 1 in eq. (22.7))

dn(t—R)—R4dR. (22.11)

It is convenientto introducethequantity

nR = R dn/dR (22.12)

which gives thenumberdensityof loops with sizes—R in the interval AR — R. Theneq. (22.11)gives
nR(t — R) — R3. At latertimes the loops arejust diluted by theexpansion:

nR(t) — [a(R)/a(t)13R3. (22.13)

During the radiation era,a(t) cc ~1’2 and

flR(t) — (tR)3’2. (22.14)

The loopslose theirenergyby gravitationalradiationanddisappearwith a typical lifetime

r—R/yG~~i, (22.15)

where y is a numericalcoefficient —100 (seesection 14). Hence, the loops surviving at time t have
(initial) sizesgreaterthan yGj.a. All smallerloopshavealreadydecayed.The massdensityof loopsat
time t is

pL— J
4uRnR(t)~_y_1I2(Gja)h/2(Gt2)_1 (22.16)

and,using eq. (3.8)

p,Jp—30 y’
2 (G~a)1’2— (G,a)112. (22.17)

The dominantcontribution to ps.. is given by the smallestloops with R — yG~t,which are about to
decay.[In fact, thecut-off of thedistribution(22.14)at R — yG~atis not sharp.It is easilyunderstood
that, for R <yG

1at,nR is proportionalto R, and thus nR(t) hasa maximumat R — yG1at.]



300 A. Vilenkin, Cosmic strings and domain walls

For closedloops formedduringthematter-dominatedera,a cc ~
2’3, eq. (22.13)gives

nR(t) — (t2R)~ (22.18)

andwe find, usingeq. (3.12),

pijp—6irG,a ln(yG/L)~. (22.19)

The total massdensityof stringsis p. = p
1,,~+ pr... From eqs.(22.10),(22.17),(22.19)and (14.3)it follows

that pjp 4 1 and the strings neverdominatethe universe.Unlike domain walls, strings do not cause
cosmologicaltrouble. In the following sections,wewill seethat strings can play a useful role in galaxy
formation andcanevenproducesomeobservableeffectsat present.

It should be notedthat, in discussingthe closed ioops, I assumedthat a large fraction of them is of
non-self-intersectingvariety. This is suggestedby the resultsof Kibble andTurok [40] andTurok [39].
However, their resultsapply only to local strings.Themotion of global string loopsis not periodic,and
theymayfrequentlyself-intersect(seesection17). In sucha case,the lifetime of the loopswill be short,
and their contributionto the massdensitywill not be muchdifferent from that of infinite strings,so that
p5/p— 30 G,ts. [If, assuggestedin section17, global stringsself-intersecton a timescaler — 100R, then
we obtain p5Jp—300Gu.]

Finally, it should be mentionedthat the evolution of Z~stringswith n >2 (seesection6) may be
different from that describedin this section.Such stringscan form verticeswhereseveralstringsjoin,
and it appearsthat underthe action of string tension,the verticescan reachequilibriumpositions,so
that thewhole networkwill “freeze” with stringsbeingstretchedbetweenthe verticesby the expansion.
In this case,theco-movingmassof stringswill grow like a(t) and the universewill eventuallybecome
string-dominated.The sameconclusionappliesto thecaseof non-commutingstringswith a non-Abelian
IT1(M). For morediscussionof a string-dominateduniverse,see section28.

23. Walls boundedbystrings

Walls boundedby strings are formed in two steps.Strings form at an earlierphasetransitionand
evolve as discussedin the previoussection.A later phasetransitiongives rise to walls which are
boundedby strings, togetherwith someclosedwalls. A numericalsimulationof thesephasetransitions
hasbeendonein ref. [54] assumingthat walls areformed soonafter the string formation,so that the
two correlationlengthsarecomparable.The resultssuggestthat the systemis dominatedby oneinfinite
cluster comprising about 90% of the total wall area and string perimeter.This cluster hasa very
complicatedtopologyand is very “holey”, so that its intersectionwith a planegives a largenumberof
shortpieces.Somefinite walls boundedby strings arealso formedin numbersdecreasingwith theirsize.
Closeddomain walls arevery rare. If the walls areformedmuch later than the strings,onehasto take
into accountdynamicaleffectsof the string evolutionon scalessmallerthanthe horizon.However,one
expectsthat the resultsof ref. [54] still correctlyrepresentthe large-scalestructureof the system.

The cosmologicalevolutionof walls boundedby stringshasbeendiscussedin refs. [4—6].Let u and a-
be the string andwall tensions,respectively.The force of tension in a string of curvatureradius R,
f — u/R, is greaterthanthe wall tension,a-, for R <u/u. Therefore,at t <a/a- the evolutionof strings
will notbe qualitatively different from that describedin theprevioussection.
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Walls areformedat t,~.,— m~/i~,which is earlierthanu/a- — ~ if ~> (m~i~~)112.Fordefiniteness,
I shallassumethat this is the case.(Here, i~ and ifl., are the symmetrybreakingscalescorrespondingto
stringsandwalls, respectively,and I haveomittedthecoupling constantfactor in a-.) Using eq. (22.6), it
is easilycheckedthat with this assumptionfriction of strings becomesunimportantat t~<u/a-. For
simplicity, we shall considerthe casewhenthe forceof friction acting on domainwalls is also negligible.
This is so for axion models[5],both becausethethicknessof the wall is muchgreaterthanthe thermal
wavelengthof the particles[51]andbecausethevacuaon the two sidesof the wall areidentical, and
particlesdo not changetheir massesacrossthe wall (seesection20). The casewherethewall friction is
importantis discussedin refs. [4,6] with similar conclusions.

At t > u/a-the typical curvatureradiusof the strings becomesgreaterthan u/a-,and the wall tension
becomesdynamically important. Domain walls will tend to shrink pulling the strings toward one
another,and theholes in the walls will increasein size. (This only appliesto theholes of size greater
than u/a-. Smallerholes will tend to shrink and disappear.)The strings will frequently intersectand
intercommute;as a result the wall connectingthe strings is rapidly cut into piecesof size not much
exceedingu/a-. (I assumethat the intercommutingprobability is p — 1.)

A piece of wall of size R > u/a- oscillatesat a typical frequencyw — R1 and loses its energyby
gravitationalradiationat a rate

M- -GWR4w6- -GuM. (23.1)

The lifetime of thepiece is independentof its size,

r — M/IA~j— (Ga-)1. (23.2)

When the pieceshrinksto asize smallerthanu/a-, its massis determinedmostly by thestring, and the
decaytime is [seeeq. (14.2)]

r — R/Gu <(Ga-)1. . (23.3)

The lifetime of thepiecescan besmallerif theydecayas a resultof multiple self-intersections.
We seethat, assuminga large intercommutingprobability, the whole systemdecaysno later than

i-— (Ga-)1.The ratio of the massdensityof walls andstrings to the total densityof theuniversenever
exceeds

(~~)— (r)l/2 G~— (Gu)112, (23.4)
max u/a-

and thus thevacuumstructuresneverdominatetheuniverse.
Thesituation is changedif thereis a periodof inflation betweenthe two phasetransitions.Inflation

can pushthe stringsout to arbitrarily largescales;then the evolutionof walls will proceedas discussed
in section21. It is conceivablethat, aftera “mild” inflation, thescaleof stringsis suchthat the walls are
cut in piecesjust when theyare about to dominatethe universe.The sizesof the pieceswill then be
comparableto their Schwarzschildradii, anda largenumberof black holesof mass—(G2a-)1 canbe
formed. This sort of scenariohasbeendiscussedin ref. [64].
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24. Monopolesconnectedby strings

Considera model of the type (9.1), in which monopolesform at T — flm andthengetconnectedby
strings at T — <tiM. Onemight expectthedistributionof monopolesandantimonopolesat formation
to berandom,with usual\/N fluctuationsof the magneticcharge:

ON— N112— (L/~M)3I’2. (24.1)

Here, N = N+ + N_— (LI~M)3is the total numberof monopolesand antimonopolesin a volume L3,
ON = N.,. — N_ is the magneticchargefluctuation, and ~M is the correlationlength. However, this
expectationis wrong: positionsof monopolesand antimonopolesat formation are stronglycorrelated
[58].To seethis, note that the total magneticchargeinside a volume can be expressedas a surface
integralover theboundaryof thevolume, wherethe integranddependson the directionof the Higgs
field at the boundary.For example,in the 0(3) modelof ref. [31]

ON = 1 ~ J~3 ~ 4’a ~4’b ~94’C dS”, (24.2)

where4” is theHiggs field anddS” is thesurfaceelement.The integrandis ~ andvariesrandomly
on scales~M; hence

ON—L/~M. (24.3)

We seethat ON goes like a squareroot of the surfacearea, not of the volume. In this sensethe
magneticcharge fluctuation (24.3) is just a surface effect, and there are no real volume charge
fluctuationsin thesystem[59].

Let us now turn to the secondphasetransition when the strings are formed. Assuming that no
substantialmonopoleannihilationhasoccurred[10],the typicaldistancebetweenthemonopolesat that
time is d

0 — (tiM/’7s)~M. If both phasetransitions are second-order,then ~M — 1~J,~.— i~, and the
string correlation length, ~, is comparableto the averagemonopole separation,d0. (If one or both
transitionsare first-order,~. canbe smalleror greaterthan d0.) Most of themonopole—antimonopole
pairswill be connectedby the shortestpossiblestringsof length —d0. Somelongerstrings andclosed
loops shouldalso be present,and the length distribution of stringscan be foundusing a Monte Carlo
simulation.A 3-dimensionalsimulationfor this systemis rathercomplicatedandhasnot yet beendone,
while 2-dimensionalsimulationsgive [54,60, 61]:

cc exp(—a�/do), (24.4)

wherea — 1 is a numericalfactor. The exponentialcharacterof the distributioncan beunderstoodif we
notethat, aswe go alongastring, at eachstepthereis a certainprobability of getting thecombination
of phasescorrespondingto amonopoleandterminatingthe string [62].

Evenif the initial distributionof strings is not like (24.4),an exponentiallengthdistributionwill be
rapidly establishedasa resultof intercommutingprocesses[7].Long stringswill be choppedinto short
piecesby intercommutingswith much morenumerousshorterstrings(seefig. 9). The probability for a
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Fig.9. Long stringsarecutin small piecesby intercommutingwith muchmorenumerousshorterstrings.

string of length � to avoid intercommuting(pergiven time) is an exponentiallydecreasingfunctionof �,
and thus stringsmuchlongerthan d0 will be exponentiallysuppressed.

The cosmologicalevolution of monopolesconnectedby strings hasbeen discussedin refs. [7,8].
When low-energy monopole and antimonopole get sufficiently close to one another,they rapidly
annihilate [10].Thelifetime of a pairconnectedby a string is, therefore,determinedby the time it takes
to dissipatetheenergyof thestring. The stringspull themonopoleswith a force f — ~.t — ,~,while the
forceof friction acting on a monopole is [seeeq. (20.4)] FM — T

2v. At T4 t~, F
5 4f and friction is

negligible. In general,monopoleshaveunconfinednon-Abelianmagneticcharges,andthe dominant
energylossmechanismis theradiation of gaugequanta[7].Theclassicaldipole radiation formulagives

— —g
2W2— —(,a/grn)2, (24.5)

whereg is thegaugecoupling, W = u/rn is the monopoleaccelerationandm — 71M/g is its mass.The

lifetime of a pair connectedby a string of length 1’ is

r — (nM/n
8)

2�. (24.6)

It follows from (24.4)and (24.6)that themonopoledensitywill decreaseexponentiallywith time.
A somewhatdifferentsituationis obtainedin Langacker—Pi-typemodels,wherethe stringtensionis

— T2 (seesection9). In this case,we find from eq.(22.5)that thepersistencelength of stringsat time t

is

R(t)— (t~/t)114t (24.7)

andneverbecomescomparableto thehorizon size.Monopolesandantimonopolesarepulled together
by the stringswith a typical velocity v which canbe foundfrom v2 — (T2/m)R(t). This gives

v(t) — (m~/m)(t~/t)”4. (24.8)

[Equation(24.8)appliesonly for t ~ (m~/m)4~when v 4 1. At earliertimes, thevelocity of monopoles
is determinedby thebalanceof tensionu — T2 and friction f— T2v, which gives v — 1.] All MM pairs
connectedby stringsmuchshorterthan v(t) t annihilate in less than oneHubble time.

If thestringsdisappearat temperatureT~4 T
5, thenassumingthatmonopoleandstringphasetransitions

areboth secondorderandusing eq. (24.4)we find that (for T < T~)

flM m~T5m~sa____exp{_a’_-_(_~_)}. (24.9)
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Here, ~M and n~are monopole and photon numberdensities, respectively,and a’ is a numerical

coefficient.
The evolutionof monopolesconnectedby stringsis different if thereis a period of inflation between

the two phase transitions (or if the monopole-formingphase transition is itself inflationary). In
particular,if the monopolesarepushedbeyondthepresenthorizon,theevolutionof strings is identical
to that of topologically stablestrings (section22).

Finally, I should mention that somedoubts havebeen raised about whetherefficient monopole
annihilation is consistentwith causality.The argumentis [63]that the magneticchargefluctuations
(24.3)cannotbe erasedon a timescaleshorterthan t — L. I think this argumentis incorrectfor several
reasons.As explainedabove, thereare no volume chargefluctuationsin the system.The fluctuation
(24.3) is just a surfaceeffectwhich can beerasedby a slight reshufflingof monopolesnearthesurface.
But my main objection is given by the dynamicalmechanismfor monopole annihilation described
above. As long as a physicalmechanismdoesnot requiresuperluminalvelocities, its efficiency is a
dynamicalquestionand is not constrainedby any causalityprinciples.For morediscussionof this issue
seerefs.[59,61, 63].

5. Cosmologicaleffectsof strings

25. Galaxyformation: Basicfacts

Galaxiesand clusters of galaxies have evolved by gravitational instability from small density
fluctuations.The origin of the initial fluctuationsis oneof themajorunresolvedcosmologicalproblems.
Somedensityfluctuationscan be producedat a phasetransitionin theearly universe.However,it can
be shown [11,65] that physicalprocessesat cosmictime t cannotproducesubstantialfluctuations on
scalesmuchgreaterthan t. Phasetransitionsareexpectedto occurat t < iO~s, and thus cannotexplain
densityfluctuationson scalesgreaterthan a few parsec.

Two ways around this difficulty havebeen suggested.In inflationary scenario[23]all presently
observableuniversehad initial size smallerthan thehorizon,and thusthe horizonproblemis avoided.
Density fluctuations in this scenarioare due to the quantum fluctuations of the Higgs field. An
alternativepossibility is that thedensity fluctuationsareproducedby strings [11,12]. On scalesgreater
thanthe horizonthedensityfluctuationsdue to strings arebalancedby thecorrespondingvariationsin
matterand radiationdensity. (On such scalesthe fluctuationsare in the equation of state; density
fluctuationsof comparablemagnitudecanonly be producedwhen thecorrespondingscalecomeswithin
the horizon [11, 65].) Rapidly moving open strings and oscillating closed loops produce density
fluctuationson scalessmallerthanthehorizon, so that the fluctuation-generatingprocesscontinuesfor
all times, extendingto largerand largerscales.The string scenarioof galaxy formation is discussedin
thenext section.Herewe shall review somewell-known resultsof thegalaxyformation theory.

The evolutionof densityfluctuationsis determinedby two majoreffects: gravitationalinstability and
dissipation.In discussingthegravitationalaspectsof theevolution, we shall usethe following result of
the linear perturbationtheory [65].

Densityfluctuationon a co-movingscale�(t) grows like

Op/p cc a(t) cc (1 + z)1 (25.1)
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when �(t)becomesgreaterthantheJeanslength,

A~=(irv~/Gp)m—lOv
5t, (25.2)

where v5 is thesoundvelocity. When �(t)< A.~,Op/p remainsconstant.
Comments:(i) This statementappliesonly to fluctuationson scalessmallerthanthehorizon,but this

is exactly the casewe are interestedin. (ii) In an open universewith 11 <1 the growth of density
fluctuationsstopsat z— 11’. (iii) In a universefilled with two (or more) uncoupledcomponents(say,
radiationand axions), A~should be calculatedfor the componentdominatingthe massdensity*. (iv)
Insteadof theJeanslengthA~it is oftenconvenientto usetheJeansmass,which canbe definedasthe
masscontainedin a sphereof diameterA~:

M~= (4ir/3)p(A.j/2)
3. (25.3)

During theradiationera, t < t~,thesoundvelocity is v
5 — 1 and theJeanslength is A~— t. Hence,the

density fluctuationsproducedby strings can start growing only at t> t~.The evolution at t> t~is
different for different typesof dark matterdominatingtheuniverse,andwe shall considervariouscases
separately.

(a) Baryon-dominateduniverse.Beforedecoupling,t < t~,baryonsarecoupledto radiation,sothat
v5 — 1 and A~— t. Thus, the density fluctuationsstartgrowing at t — max (t~,~ The discussionis
simplified if we note that eqs. (2.17)and (2.18)requirethat ~1— 0.1 in a baryon-dominateduniverse.
For this valueof (1 andh — 1, it follows from eqs.(2.22)and (2.24)that t~is notmuch different from
tdcc, eq — tdec. At t — tdec the soundvelocity dropssharply from v5 — 1 to the thermalvelocity of hot
hydrogengas,v5 — 10~,and thedensityfluctuationsstartgrowing on all scalesof cosmologicalinterest.
An importantdissipationaleffect in abaryon-dominateduniverseis the Silk damping:adiabaticdensity
fluctuationsareerasedby photonviscosityon all massscalessmallerthan

— 1012(11h
2)2M

0. (25.4)

(b) Neutrino-dominateduniverse[66].For simplicity we shall assumethat only oneof the 3 neutrino
specieshasa Majoranamassm~~ 0. If theuniverseis dominatedby thesemassiveneutrinos,then

12 h
2= 0.3m~ (25.5)

and z~= 10~m~,wherem~= m~/30eV. Neutrinosbecomenonrelativisticat z— z~,and for z<z~

theirmeansquarevelocity is

v=6X105m~(1+z)cm/s. (25.6)

The soundvelocity is v
5 = 3~’

2vandtheJeansmassis

M~=1.3X 10~(1+z)312m~’2M®

= Mj.eq[(1 + z)/(1+ z~)]312, (25.7)

* Independentfluctuationsin thesubdominantcomponentscan growonly logarithmically,andwe shalldisregardthis effect here.
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where~ = 1.3 x 1015m~ M0— Meq. Here,M~is the masswithin a sphereof diametert at t = t~q,

M~= 2x 1015 m~M0.In what follows we shall make no distinction between Mjeq and Meq.

Perturbationson massscalesM < M~startgrowing at z = ZM, whenthe JeansmassM~drops downto
M:

1 + ZM = (M/Meq)
2”3 (1 + z~). (25.8)

Neutrinosarenon-interactingparticlesanderasetheir own densityfluctuationson scalessmallerthan
M

5 by freely streamingout of overdensedregions. (For this reason,in scenarioswith a primordial
spectrumof adiabaticfluctuations, the density fluctuations survive only on scalesgreater than the
maximumJeansmass,Mjma,, — Meq.)

(c) Axion-dominateduniverse.Axions are cold particleswith thermal velocity very close to zero.
They are not coupled to radiation,and perturbationsin axionsstart growing at t teq. Thereare no
effectivedampingmechanism,andso the small-scaledensityfluctuationsarenot erased.

26. Stringsandgalaxyformation

In this section we shall find the spectraof density fluctuationsgeneratedby strings in various
scenarios.

If oneassumesthat closed loopsrapidly decayasa resultof multiple intercommutings(whichmaybe
the casefor global strings),then the densityfluctuationsproducedon eachscaleat horizoncrossingare
of theorder (Op/p)hO~—piflf/p,wherep1,~is the densitydueto infinite strings(seesection22).This gives
[11]

(OP/P)hor A Gp., (26.1)

whereA — 30 andA — 6ir for scalescoming within the horizon at t < teq and I> teq, respectively.This
is thewell-known scale-invariant(Zel’dovich) spectrum.The cosmologicalevolutionof sucha spectrum
hasbeenextensivelydiscussedin theliterature.Reasonablegalaxy formationscenariosareobtainedfor
(OP/p~ — 10~—10~.This correspondsto Gu — 10_6 and gives ~ — 1016 GeV for local strings and

— 1015GeV for global strings. It is encouragingthat the requiredvalue of ~ falls in the grand
unification range.

A distinctive feature of the string scenariois the formation of planarwakesbehindrelativistically
moving strings[20].The wakeformedbehinda straightstring hastheshapeof awedgewith an opening
angle—8 IT Gu (assumingthat the velocity of the string is v — 1 and that the thermalvelocity of the
particlesis smallerthan4 ir Ga). The wake formation is due to the conicalnatureof spacearoundthe
string(seesection 19) andin this senseis a purely kinematiceffect.The densitycontrastin the wake is
Op/p — 1, its length is —t and its mass is comparableto that of the string: M~— 8 IT G~t

3 Op—st.

Particlesenterthe wake with a transversevelocity v~— 4 IT Gp~.The gravitationalaccelerationin the
field of the wake is g — 2 irGM~/t2,andcollisionlessparticles (like axions)do not escapemuchfurther
thanthe width of the wake: v~/2g— 4 IT G,a t. Baryonswill lose their transversevelocity in a shockand
will stay confinedwithin the width of the wake.Wakesformedbehindrapidly moving stringscan help
to explain theobservedlarge-scalestructurein modelswith colddark matter(axions).

We nowturn to the scenarioin which loopshavelong lifetimes,
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r—R/’yG~, (26.2)

where y — 100 (seesection 14). In this casegalaxies and clusterscondensearoundoscillating closed
loops, while the loops gradually decay by gravitational radiation [12]. Although at presentmany
propertiesof the loopscan only be estimatedin order-of-magnitudesense,it maybe usefulfor future
applicationsto be reasonablyprecisein normalizationof certainquantities.We shall assumethat the
rateof loopformation is

dn/dt— ~3t
4 (26.3)

[comparewith (22.7)] andthat the typical length of loopsformedat time t is

R—at. (26.4)

Note that hereandbelowR standsfor the lengthof the loops.Parametersa andf3 can be determined
by a computersimulationof theevolution of strings. Hereweshall assumethat both a and /3 arenot
very different from 1.

Since the densityfluctuationsproducedby strings cannotgrow at t < t~,onecanstartby calculating
Op/p at t — teq. Like in section22, we find the numberdensityof loopsat teq

nR(teq)— /3 a3”2 (R t~)3’2, (26.5)

where

~ (26.6)

Considerthe density fluctuation on a scale� < teq. A volume — ~ will typically containNR — flR�3

loopsof sizeR. The massfluctuationinducedby such loops is

3M — Nk’2u R cc R114. (26.7)
This showsthat the main contributionto 3M is given by the largestloop in the volume,that is, by the

loop of size R suchthat NR — 1:

R — a/32’3 ~/teq. (26.8)

The correspondingdensity fluctuationis Op — uR/(3— af32~’3,1/eteq and

(Op/p)~—30 af3 213G/.L teqle 30 a/3213 G’/2(M/Meq)_h/3. (26.9)

Here, M(Meq) is the massof matter within a sphereof diameterif’ (teq). For 3 speciesof massless
neutrinos(N~= 3), M~= 5.5 x 1013 (11h2)2M

0.
Equation(26.9) appliesfor M1 ~ M ~ M2, where

Mi~$~(y/a)
312(G~)312Meq,M

2f3~Meq. (26.10)
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Loops on scalesM < ft,!1 havedecayedat t < t~,while loops on scaleM> M2 will form at t> t~.For
M < M1 density fluctuations do not grow between the loop decay and teq. Assuming that the
fluctuationsarenot dampedout, it is easilyshownthat on suchscales

(Op/p)~—30 a
3”2 /3 y_112(G~)’~’2. (26.11)

Fluctuationson scalesM> M
2 aregeneratedat tM — ~J3GM The magnitudeof the fluctuationsat

that time is Op/p —6 ira /3 G~.At latertimes Op/p grows like (1+ z)
1 andwe canwrite

Op/p —6 ira/3 G
1tt (t/tM)

2’3 —6 ira p~3G/.L (M/Meq)2”3(1 + zeq)/(1+ z). (26.12)

The evolutionof fluctuationsfor M < M
2 is different for different typesof dark matterdominatingthe

universe,andwe shall considervariouscasesseparately[13].
(a) Baryon-dominateduniverse. Density fluctuationsproducedby the loops which decayedbefore

td~— t~ are erasedby Silk damping. At t — t~— t~baryonspick up the fluctuationsproducedby
surviving loops, andat latertimes

Op/p — (Op/p)~(l+ z~)/(1+ z) (26.13)

for M1<M<M2.
Statistical analysis of galaxy distribution suggests[65] that the maximum scale that has gone

nonlinearat presentis —8 h
1 M~,which correspondsto ~ — 6 x 101412h~M

0. To normalize the
spectrumof fluctuations, we shall require that Op/p — 1 for M— ~ at z— 12_i. (12—0.1 in a
baryon-dominateduniverse.)This determinesthe valueof G,z:

~4 X 10~a
1 /32/3(12h)1. (26.14)

The resultingspectrumof fluctuationsis shownin fig. 10 for 12 — 0.1, a— /3 — h — 1 and y — 100. This
spectrumcorrespondsto thegravitationalclusteringpicture: the fluctuationsincreasetowardssmaller
scales*.The lower cut-off of thespectrumis at M

1 — 10
12M

0.It gives themassof the first objectsto be

log tap/pt

log *
Fig. 10. Thespectrumof densityfluctuations in (solidcurve)neutrino-,(dashedcurve)baryon-,and (dashed-dottedcurve)axion-dominateduniverse.
The scaleof 8p/p is arbitrary.

* An abrupt change of slopeof 8p/p at M M1, M2 is, of course,an artifact of our approximations. A more accurate analysis should give

smooth transitions betweendifferent regimes.
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formed. Interestinglyenough,M1 is the typical massof a large galaxy. In this scenariogalaxiesstart
forming at z— 40.

(b) Neutrino-dominateduniverse.Neutrinoserasetheir density fluctuationson scalessmaller than
their Jeansmass,M < M1, but whenM~dropsdown to M, they pick up the fluctuationsproducedby
surviving loops.Hence,we canwrite

Op/p — (Op/p)eq(l+ zM)/(1 + z) cc M
113, (26.15)

whereZM is given by eq. (25.8). Equation(26.15)appliesfor M~<M < M
2, where

M~— a
3”5 /3_2/5(yG~ts)3”5M~. (26.16)

Loops on scalesM < M~decayat z> ZM. For M> M
2 thespectrumis given by.eq. (26.12).

Thespectrumwe haveobtainedhasa maximumat M — M2, which is the.first scaleto go nonlinearin
this model. Requiringthatat presentOp/p — 1 for M — ~ we obtain

~4 x 10~a
1 /31/3 (26.17)

Figure 10 shows the spectrumof density fluctuationsfor 11 — h — a —/3 — 1 and y — 100. In this case
m,. — 100eV, M

2 — M~— 10
14M

0 andM~— 10’
2M

0. Pancakesof mass—M~collapseat z— 1. In our
model (unlike the standardpancakescenario)the pancakefragmentationis helpedalong by the
presenceof perturbationson scalesM~<M<Meq. Note that M~hasthe order-of-magnitudeof a
typical galacticmass.

(c) Axion-dominateduniverse.In theaxion-dominatedcaseperturbationson all scalesstartgrowing
at t — teq. Thereareno efficient dampingmechanisms,and the fluctuationson scalesM < M2 aregiven
by eq. (26.13), where(Op/p)~is given by (26.9) and (26.11) for M > M1 and M < M1 respectively.
Figure 10 shows the spectrumof fluctuationsfor 12 — h — a — /3 — 1 and y — 100. Like in thebaryon-
dominatedcase,this spectrumcorrespondsto thegravitationalclusteringpicture. Baryonspick up the
axion densityfluctuationsat t> tdec.

The analysisof this section shows that strings of a typical grand unification massscalecan leadto
reasonablescenariosfor galaxy formation in a universedominatedeither by baryons,neutrinosor
axions. In fact, the string model hassomeadvantagesin all threecases,comparedto the standard
scenariowith adiabaticfluctuations.A detaileddiscussionof galaxyformation scenariosis beyondthe
scopeof this review, and I will only mentionthe relevantpoints.

(i) Density fluctuationsproducedby strings arenot in the form of waveswith randomphases;this
can explain theobserveddeviationsfrom the Gaussianbehavior.For example,rare supergiantloops
canproducelocalized regionsof density contrastmuch greaterthanonewould expectfrom Gaussian
fluctuations[20]. Occasionalsplitting of loops can help to explain the observedcluster—clustercor-
relations[67].

(ii) Closedloops havesizesmuchsmallerthanthoseof the galaxiescondensingaroundthem.A loop
representinga small density fluctuation on the galactic scale producesa large densitycontrastin its
immediatevicinity. This resultsin accretionof matteronto theloops andformationof massivecompact
objects,which can be identified with quasarsand active galactic nuclei [20,21]. Early formation of
quasarscanreionizetheuniverse,smoothingout small-scaletemperaturefluctuations,and thusresolve
oneof thedifficulties of the baryon-dominatedscenario.It can also explaintheexistenceof quasarsat
z— 1 in neutrino-dominatedmodel,which requiresthepancakecollapseat z<0.5.
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(iii) The galactic mass — 10’2M
0 naturally arises as a cut-off of the spectrumin baryon- and

neutrino-dominatedcases.
(iv) Finally, wakesformed behind long, rapidly moving strings can help to explain the observed

large-scalestructurein theaxion-dominatedcase.
It shouldbe noted that the string scenarioof galaxy formation assumesthat theuniverseis initially

homogeneousand isotropic on scalesmuch greaterthan the horizon. Such initial conditions can be
explainedif weassumethat therewasa periodof inflation beforethestringformation.An exampleof a
grandunified model which gives both a satisfactoryinflationaryscenarioandstrings of requiredenergy
scaleis given in ref. [30].

27. Observationaleffectsofstrings

If strings indeed cause the galaxy formation, they should also produce a number of unique
observationalside effects. Someof theseeffectswill soonbe within theexperimentallimits, which will
allow to rule out or confirm the stringscenario.Evenif stringshavenothingto do with galaxies,their
detectionwould, of course,be extremelyinteresting.However,it appearsthat stringswith G~4 106

will be very difficult to observe.In this section I shall briefly discussvarious observationaleffectsof
strings.For moredetailsthe readeris referredto theoriginal literature.

Gravitational wavesemitted by oscillating loops add up to a stochasticgravitationalwave back-
ground.Loops of sizeR radiateat frequencies~ — R_i; after thewavesareemitted,their frequencyis
red shiftedlike ~ cc (1 + z). Presentlysurviving loops haveextremelylow frequencies,and the flux they
produceis well below the observationalcapabilities[39,68]. With G/2 — 106, waveswhich now have
periodsless than 10~yearscorrespondto loops that formedanddecayedduring the radiationera.

A convenientmeasureof the intensityof the radiationis

Qg(w)~. (27.1)
Pc dw

Here~g is theenergydensityof thegravitationalwavesandp~is thecritical density.Dg(w) gives the
energydensityin units of Pc per logarithmic frequencyinterval.

Loops decayingat time — t during the radiationera (t < teq) havesize R — y G~ t and produce
gravitationalwavesof frequency—R~andenergydensity

pg/.LRnR— a
312$y~2(G~t)”’2(Gt2)1, (27.2)

wherea and/3 aretheparametersintroducedin theprevioussection.Sincep~redshiftsin thesameway
asthe radiation densityp

7, we canwrite [181*

flg(w) — 30 a
3”2 /3 ~[1~(G,a)1’2127, (27.3)

where127 = PV/PC = 2x 105h2.With G
1a— 106, a — /3 — 1 andy — 100 this gives

* Two effectsnot taken into accountin eq. (27.3)are: (i) radiationof asingle loop is spreadover arangeof frequencies(seesection14) and (ii)

as the loop decays,its frequencygraduallychanges.A more careful estimation [41Jdoesnot changetheorderof magnitudein (27.3).
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12g(w)— 107h2. (27.4)

This equation applies for waves with present frequencies at ? (1 + z~)1,(yG~teq)’ —

4x 10412h2yrs~.The spectrumat smallerfrequenciesis discussedin refs. [18,19].
Recentobservationsof themillisecond pulsarimply [19]that Il~< 10~for gravitationalwaveswith

periods—1 year.However,the accuracygrows rapidly with the time of observation,and 12~— iO~will
probablybecomedetectablewithin severalyears.

If the loops rapidly deterioratebecauseof self-intercommutings,theenergydensity of gravitational
wavesis very small (fig is proportionalto (G

4a)
2 [18]). In this casemost of the loop energygoesinto

ultrarelativisticparticles.The typical energyof thedecayproductsis

(27.5)

where n is given by eq. (13.3)and f is the fraction of loop energy that goes into kinetic energyof
daughterloops. For the sakeof illustration takef = 0.5. (With this choicethe equationsconsiderably
simplify, but this valueoff is probablytoo large.)Thenthe loopsdecayingat time t produceparticlesof
energy

e — ~ t)U2 — m~(G~)314(t/t~)”2, (27.6)

wheret~—1043sis the Plancktime andm~—1019GeV is the Planckmass.With G~— 106, particles
beingproducedat presenthaveenergies— 10~GeV! Nongravitationalinteractionsof suchparticlesare
extremelyweak. The cross-sectionfor scatteringon photonsof the microwave backgroundis a- —

a~e~— a~/eT,whereScm — (sT)1’2 is the center-of-massenergy,T is the temperatureand aG is the
gaugecouplingsquared.The typical interactiontime is

— (n
7o-)

1— s/a~T2— f1”2(e/m~)t~ t, (27.7)

where n
7 — T

3 is the photon number density. The gravitational interaction cross-sectionis a-g —

(G~ — e T/m~and the interaction time is Tg — 11’(m~/s)(t/t~)t~ t. Eventually the particles are
sloweddown by expansionto energies<<mr. Then r~becomeslessthan the Hubbletime, the particles
lose the remaining energyby pair production, and the pairs lose most of their energyby inverse
Comptonscattering[19]. Pairsbeing producedtodayare dueto the loops that decayedat t — 1010s.
The resultingy-ray spectrumpeaksat m~/T—105 GeV. However,the initial energyof the loops is red
shiftedby a factor —117 comparedto that of matter,andso

Dyray — 30G,tL 11,, — i0~. (27.8)

This value is consistentwith observationalconstraints,tlyray< iO~.(Here I disagreewith the con-
clusion of ref. [19],wherethe redshifteffect is not takeninto account.)Note that, althoughmostof the
numericalvaluesin thisdiscussionarevery sensitiveto theassumedvalueoff, theestimate(27.8)is not.

Anotherobservationalpredictionof thestring scenariois the formationof doubleimagesof objects
locatedbehindthe strings[14]. The typical separationbetweenthe imagesis

(27.9)
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(seesection 19). With G~— 106_10_5 this gives ~ — 3—30 arcsec.The probability for a quasarto be
lensedby a string is [15]—~a/38 ln(y 8)1. With —io~known quasars,the expectednumberof double
quasarsis — 1. It is not excludedthat someof the known doublequasarsaredue to strings [15—17].
Galaxiesare muchmorenumerousthan quasars,andone can searchfor lines of doublegalaxiesalong
openstringsor largeclosed loops[15,16].

Kaiserand Stebbins[22]havepointed out that stringsshouldleavea characteristicsignatureon the
microwavebackground:the backgroundtemperatureshould havesteplike discontinuitieson curveson
the sky. This effect is similar to the wake formation behinda moving string.The co-movingframeson
different sides of the wake move towards each other with a velocity — 8 ir G~v, where v is the
transversevelocity of the string. As a result, the observerwill find the radiation on the trailing sideof
the stringblueshifted comparedto that on the leadingside.With v — 1 thecorrespondingtemperature
fluctuation is OT/T —8 ir G~av — 10 G~.Presentobservationallimits are consistentwith G~s 10~.

28. String-dominateduniverse

As we discussedin section22, noncommutingstringswith non-Abelianiri(M) andZ~stringswith
n � 3 canform stablenetworksandeventuallydominatetheuniverse.In thissectionweshall considerthe
possibility that our universeis in fact string-dominated[69].

Supposethe strings are formed at t — t0 and that the correlation length at the phasetransition is
~< t0. The energydensityof strings at that time is p~(to)—~ At later times the strings are just
stretchedby the expansionof the universe,p~(t)c’ a

2(t). The time t. when the universebecomes
string-dominatedcan be foundfrom (assumingts> teq)

p~/p(t
8)— Gp(to/~)

2(teqIto)(ts/teq)213— 1 . (28.1)

For t> t~,usingthe evolutionequation(a/a)2— Gp,, oc a~,wefind that the universeexpandslike

a(t)cct. (28.2)

This is the samet-dependenceas onefinds in a universewith 11 < 1 at redshifts2+ z 411’ [65]. Thus,
a universewith 12 = 1 which becomesstring-dominatedat a redshift z~mimics the behavior of a
universewith 12 — (2 + z~)1< 1.

Thevalueof 12 verycloseto 1 is predictedby theinflationary scenario[23].Onthe otherhand,there
is strong observationalevidenceindicating that 0.2~ 11 s 0.5. This discrepancycan be resolvedif the
universebecomesdominatedby stringsat 0 ~ z~~ 3.

Requiringthat t~—1017sandusingthe values teq — 1011 s, t
0— m~/s~

2[seeeq. (2.9)], we find from eq.
(28.1)

— 104(~/t~~2GeV~ iO~GeV. (28.3)

The correspondingvalue of G~is s10~°.Thetypical distancebetweenthe stringsis —(Gp.)1’2 tpres S

1013 cm, where tpre. — i0~Mpc is the presentcosmictime. Although the neareststring maybe closerto
us thanthe Sun,its experimentaldetectionseemsnearly impossible.Local gravitationaleffectsof strings
with G~~ 10~°are totally negligible, and even if the observeris so lucky that the string passes
throughhis own body, he will hardly notice it.
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It shouldbe noted that no realisticgrandunified modelshavebeensuggestedwhich predictstrings
developing stablenetworks at such a low-energy scale (i~~ iO~GeV). The universecan also be
dominatedby “regular” strings,which arestill moving at relativistic speeds,but havevanishinglysmall
intercommutingprobability.The conditionfor i~in this caseis [69] ij ~ iO~GeV.
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Note addedin proof

I would like to mentionsomeinterestingnewdevelopmentsthatoccurredafterthispaperwassubmitted.
(1) Albrecht andTurok [70]havedoneadirect numericalsimulationof the evolutionof strings.They

usedthemethodof ref. [54]to simulatethephasetransitionandevolvedtheresultingsystemof stringsby
solving numericallythe dynamicalequationsof motion.The intercommutingprobability for intersecting
stringswas assumedequaltoone.Theresultsof thesimulationarebasicallyin agreementwith thescenario
of string evolutiondescribedin section22 and, in fact, put that scenarioon a firmer basis.

(2) Witten hasshown[71]that in somegrandunified modelselectromagneticgaugeinvariancecanbe
spontaneouslybrokeninsidethestrings.Suchstringswouldbehaveassuperconductingwires.If anelectric
field E isappliedalongasuperconductingstring,thecurrentbuildsupattheratedi/dt = f3(ce2/h)E, wheree
is thegaugecouplingand1~is amodel-dependentnumericalcoefficient.Whenthecurrentreachesacritical
value~max,itsgrowthterminatesandthestringstartsproducingparticlesattherated2N/dtd~— (e/h)E. The
magnitudeof ~maxis alsomodel-dependent,but doesnot exceeden/h,where ij is the energyscaleof the
string.

BeforeWitten’spaperit appearedthat stringscanmanifestthemselvesonly throughtheirgravitational
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interactions.However,superconductingstringscanhavevery interestinginteractionswith cosmicmagnetic
fields. Considera string movingthrough amagnetizedplasmawith avelocity v. In theframeof the string
thereis an electricfield E = c~1vxB, andthecurrentbuilds up at the ratedi/dt — (e2/h)vB.Thiscurrent
createsits own magneticfield which in turn actson the plasma.Thephysicsof theseinteractionsof strings
with cosmicplasmasis not well understood.Someinterestingpossibilitiesareindicatedin refs. [71,72].
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[71] E. Witten, PrincetonUniversityPreprint (1984).
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