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Sheet 13: Theorems of Gauss and Stokes

Posted: Mo 24.01.22 Central Tutorial: Th 27.01.22 Due: Th 03.02.22, 14:00
(b)[2](E/M/A) means: problem (b) counts 2 points and is easy/medium hard/advanced
Suggestions for central tutorial: example problems 2, 4, 6 (7, if time permits).
Videos exist for example problems 4 (V3.7.7), 7 (V3.7.11).

Example Problem 1: Gauss’s theorem — cuboid (Cartesian coordinates) [2]

Points: (a)[1](M); (b)[1](M).

Consider the cuboid C, defined by x € (0,a), y € (0,b), z € (0,c¢), and the vector field u(r) =
(%IQ + 2y, %xzyQ,O)T. Compute its outward flux, ® = fs dS - u, through the cube’s surface,
S = 0C, in two ways:

(a) directly as a surface integral; and

(b) as a volume integral via Gauss's theorem.
[Check your results: if a =2, b= 3, ¢ = 3, then & = 18]

Example Problem 2: Computing volume of barrel using Gauss’s theorem [1]
Points: (a)[1](E); (b)[2](A,Bonus).

Consider a three-dimensional body bounded by a surface S. One method of computing its volume,
V', is to express the latter as a flux integral over S by evoking Gauss's theorem for a vector field,

u, satisfying V -u = 1:
V:/dv:/dvv.uGa:“SS/dSn.
v 1% S

Use this method with u = %(:U,y, 0)” to compute, in cylindrical coordinates, the volume of

(a) a cylinder with height h and radius R, and

(b) a cylindrical barrel with height h and z-dependent radius, p(z) = R[1 + asin(7z/h)]'/2, with
z € (0,h) and a > 0. [Check your result: if a = 7/4, then V = 37 R?h.]

Example Problem 3: Gradient, divergence, curl, Laplace in cylindrical coordinates [5]
Points: (a)[0.5](E); (b)[0.5](E); (c)[0.5](E); (d)[1](M); (e)[0.5](M); (F)[1](M); (g)[1](E)

We consider a curvilinear orthogonal coordinate system with coordinates y = (y', 12, 4°)7 =
(n, p, v)T, position vector r(y) = r(n, s, v) and coordinate basis vectors d,r = e,n,,, d,r = e, n,,
o,r = e,n,, with |le;|| = 1 and norm factors n,, n,, n, (i.e. no summations over 7, y and v
here!). Furthermore, let f(r) be a scalar field and u(r) = e,u” + e, u" + e, u” a vector field,
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expressed in the local basis. Then, the gradient, divergence, curl and Laplace operator are given
by
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where circles with three arrows denote cyclical permutations of indices. Now consider the cylindrical
coordinates defined by r(p, ¢, z) = (pcos ¢, psin g, z)" .

(a) Write down formulas for e, €4, e, and n,, ng, n. .

Starting from the general formulas given above, find explicit formulas for
(b) Vf, ()V-u (d)Vxu (e V3.

(f) Verify explicitly that V x (V f) = 0, using the given formulae for the gradient and curl in
general curvilinear coordinates 7, 1, v (i.e. not specifically cylindrical coordinates).

(g) Use cylindrical coordinates to compute V f, V-u, V x u and V2 for the fields f(r) = ||r|*
and u(r) = (z,y,22)". [Check your results: if r = (1,1, 1)7, then Vf = (2,2,2)7, V-u = 4,
V xu=0and V*f = 6]

Example Problem 4: Gradient, divergence, curl (spherical coordinates) [2]

Consider the scalar field f(r) = 1 and the vector field u(r) = (e7"/*/r)r, with r = (z,y,2)" and
22 + 42 4 22. Calculate Vf, V -u, V x u and V2 explicitly for r > 0,

(a) in Cartesian coordinates; (b) in spherical coordinates.

Verify that your results from (a) and (b) are consistent with one another.

Example Problem 5: Gauss’s theorem — cylinder (cylindrical coordinates) [2]
Points: (a)[0.5](E); (b)[1](M); (c)[0.5](M)

Consider a vector field, u, defined in cylindrical coordinates by u(r) = e,zp, and a cylindrical
volume, V, defined by p € (0, R), ¢ € (0,27), z € (0,H) .

(a) Compute the divergence of the vector field u in cylindrical coordinates.

Compute the flux, @, of the vector field u through the surface, S, of the cylindrical volume V/, via
two methods:

(b) by calculating the surface integral, ® = [, dS - u, explicitly;



(c) by using Gauss's theorem to convert the flux integral to a volume integral of V - u and then
computing the volume integral explicitly.

Example Problem 6: Stokes’s theorem — magnetic dipole (spherical coordinates) [2]
Points: (a)[1](M); (b)[1](M)

Every magnetic field can be represented as B = V x A, where the vector field A is known as the
vector potential of the field. For a magnetic dipole,
A:lmxr7 B:13r(m.r)—m7«2’
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where c is the speed of light. Let the constant dipole moment m be oriented in the z-direction,
m = e,m. Let H be a hemisphere with radius R, oriented with base surface in the xy-plane,
symmetry axis along the positive z-axis and ‘north pole’ on the latter. Compute the flux integral
of the magnetic field through this hemisphere, &, = fH dS - B, in two different ways:

(a) directly, using spherical coordinates;

(b) use B =V x A and Stokes's theorem to express ® as a line integral of A over the boundary
of the surface of H, and evaluate the line integral.

Example Problem 7: Stokes’s theorem — magnetic field of a current carrying conductor
(cylindrical coordinates) [4]

Points: (a)[1](E); (b)[1](M); (c)[0.5](M); (d)[0.5](E); ()[0.5](M); (f)[0.5](M)
Let an infinitely long, infinitesimally thin conductor be oriented along the z-axis and carry a current
I. It generates a magnetic field of the following form:

21 1 y 211
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Calculate the divergence and rotation of B(r) explicitly for p > 0, using

(a) Cartesian coordinates; and
(b) cylindrical coordinates. [Compare your results from (a) and (b)!]

(c) Use cylindrical coordinates to compute the line integral, 957 dr - B, of the magnetic field along
the edge, 7, of a circular disk, D, with radius R > 0, centred on the z-axis, and oriented
parallel to the xy-plane.

(d) Use Stokes's theorem and the result from (c) to compute the flux integral, [, dS-(V x B),
of the curl of the magnetic field over the disk D prescribed in (c).

(e) Use your results for V x B from (a) and (d) to argue that the curl of the field is proportional
to a two-dimensional d-function, V x B = e, Cé(x)d(y). Find the constant C. [Hint: The
two-dimensional d-function is normalized such that [, d.Sd(x)d(y) = 1 for the area integral
over any surface D which lies parallel to the xy-plane and intersects the z-axis.]



(f) Write the result obtained in (e) in the form V x B = %Zj(r) and determine j(r). This
equation is Ampere's law (one of the Maxwell equations), where j(r) is the current density.
Can you give a physical interpretation of your result for j(r)?

[Total Points for Example Problems: 18]

Homework Problem 1: Stokes’s theorem — cuboid (Cartesian coordinates) [2]

Points: (a)[1](M); (b)[1](M).

Consider the cuboid C, defined by z € (0,a), y€(0,b), z€(0,c¢), and the vector field w(r) =
3(yz?, —x2*,0)". Compute the outward flux of its curl, ® = [, dS-(V x w), through the surface
S = 0C\top, consisting of all faces of the cube except the top one at z = ¢, in two ways:

(a) directly as a surface integral;

(b) as a line integral via Stokes's theorem.

[Check your results: if a =2, b=3, c = % then & = %]

Homework Problem 2: Computing volume of grooved ball using Gauss’s theorem [1]
Points: (a)[1](E); (b)[2](A,Bonus).

The volume of a body can be computed using a surface integral, V' = fs ds - %r, over the body's
surface, S (cf. the corresponding example problem). Use this method to compute, in spherical
coordinates,

(a) the volume, V, of a ball with radius R, and

(b) the volume, V (e, n), of a ‘grooved ball’, whose ¢-dependent radius is described by the function

r(¢) = R[l + esin(ngb)]2/3, where 1 < n € N determines the number of grooves and € < 1
their depth. [Check your result: V(3,4) = 22V/(0,0).]

Homework Problem 3: Gradient, divergence, curl, Laplace in spherical coordinates [5]
Points: (a)[0.5](E); (b)[0.5](E); (c)[0.5](E); (d)[1](M); (e)[0.5](M); (F)[1](M); (g)[1](E)

Consider a curvilinear orthogonal coordinate system with coordinatesy = (y!, %, v*)T = (n, u,v)7,
position vector r(y) = r(n, u, ) and coordinate basis vectors J,r = e,n,, d,r = e,n,, 0,r =
e,n,, with ||e;|| = 1 . Furthermore, f(r) is a scalar field and u(r) = e, u" + e, ,u* + e, u” is a
vector field, expressed in the local basis. Then, the gradient, divergence, curl and Laplace operator
are given by

1 N
Vf = enn—&,f + ’\IVQL + @L )
m

1
1 nu G‘M
. — n
V-ou nnnunya" () X4+ A\u} 7
_ v - N~
qu_enn”nu d, (nyu )—8,,(nuu“)} + R ) + A\;} ,

mey

2 _ 1 T]’-A/L T\
Vf_V-(Vf)_nnnunyan( 8nf) + Ayt A\V} :

Ty

Consider the spherical coordinates defined by r(r, 6, ¢) = (r sin 6 cos ¢, r sin 0 sin ¢, r cos Q)T.



(a) Write down formulas for e,, €y, €4 and n,, ng, ng.
Starting from the general formulas given above, find an explicit formula for
(b) Vf, ()V-u (d)Vxu (e V3.

(f) Verify explicitly that V - (V x u) = 0, using the above formulae for the divergence and the
curl for general curvilinear coordinates 7, p, v (i.e. not specifically spherical coordinates).

(g) Use spherical coordinates to compute V £, ¥V -u, V x u and V> for the fields f(r) = ||r||*
and u(r) = (0,0, 2)7. [Check your results: if r = (1,1, 1)7, then Vf = (2,2,2)T, V- -u =1,
V xu=0and V*f =6]

Homework Problem 4: Gradient, divergence, curl (cylindrical coordinates) [2]
Points: (a)[1](E); (b)[1](M)

Consider the scalar field f(r) = z(2? + y*) and the vector field u(r) = (zz,2y,0)”. Calculate
Vf, V-u V xuand V2f explicitly in

(a) Cartesian coordinates; (b) cylindrical coordinates.

Verify that your results from (a) and (b) are consistent with one another.

Homework Problem 5: Gauss’s theorem — wedge ring (spherical coordinates) [4]
Points: (a)[1](M); (b)[2](A); (c)[1](M)

Consider the ‘wedge—ring’', W, which is shaded grey in the
sketch. This shape can be expressed in spherical coordinates
by the conditions r € (0, R) and 6 € (7/3,27/3). (Such a
ring-like object, with wedge-shaped inner profile and roun-
ded outer profile, is constructed from a sphere with radius
R, by removing a double cone centred on the z-axis with
apex angle 7/3.) Compute the outward flux, ®y, of the
vector field u(r) = e,r? through the surface, OW, of the
wedge—ring, in two different ways:

(a) Compute the flux integral, y = [, dS - u. [Check your result: if R = 3, then Oy, = % ]

(b) Use Gauss's theorem to convert the flux integral into a volume integral of the divergence V -u,
and compute the volume integral explicitly. Hint: In the local basis of spherical coordinates,

. 1
Op (sm Gue) + rsin@ad)wb .

1 '
Vou= ﬁar (TQU ) + rsin 6

(c) For the vector field w(r) = —e, cosf, calculate the outward flux, ®y = Jow dS - w, through
the surface of the wedge-ring, either directly or by using Gauss’s theorem.

[Check your result: if R = =, then &y = |



Homework Problem 6: Stokes’s theorem — cylinder (cylindrical coordinates) [2]
Points: (a)[1](E); (b)[1](E)

Consider a cylinder, C, with rad2ius2R and height aR?, centred on the z-axis, with base in the zy-
plane, and the vector field u = = (—y, z, 0)”. Compute the flux of its curl, &7 = [, dS-(V xu),

z

through the top face, T', of the cylinder in two different ways:

(a) directly, using cylindrical coordinates; and

(b) by using Stokes's theorem to express @ as a line integral of u over the boundary, 9T, of the
cylinder top, and then computing the integral.

Homework Problem 7: Gauss’s law — electric field of a point charge (spherical coordi-
nates) [4]

Points: (a)[1](E); (b)[L](M); (¢)[0.5](M); (d)[0.5](E); (e)[0-5](M); (f)[0.5](M)

The electric field of a point charge () at the origin has the form

E(r)zgr:er%J with T>07 T:Vx2+y2+22'
T

Calculate the divergence and the curl of E(r) explicitly for » > 0, using

(a) Cartesian coordinates; and
(b) spherical coordinates. [Compare your results from (a) and (b)!]

(c) Use spherical coordinates to compute the flux, ®5 = fs dS - E, of the electric field through
a sphere, S, with radius R > 0, centered at the origin.

(d) Use Gauss's theorem and the result from (c) to compute the integral, [, dV(V - E), over
the volume, V/, enclosed by the sphere S described in (c).

(e) Use your results for V - E from (a) and (d) to argue that the divergence of the field is
proportional to a three-dimensional d-function, i.e. has the form V - E = C'§®(r). Find
the constant C. [Hint: The normalization of §®)(r) = d(x)5(y)d(2) is given by the volume
integral [, dV 0®(r) = 1, for any volume, V, that contains the origin.]

(f) Write your result from (e) in the form V - E = 4mp(r), and determine p(r). This equation is
the (physical) Gauss's law (one of the Maxwell equations), where p(r) is the charge density.
Can you interpret your result in terms of p(r)?

[Total Points for Homework Problems: 20]




