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(b)[2](E/M/A) means: problem (b) counts 2 points and is easy/medium hard/advanced

Suggestions for central tutorial: example problems 1, 3(a), 4, 5.
Videos exist for example problems 4 (C6.2.1), 5 (C6.3.5).

Example Problem 1: Integrals with ¢ function [3]
Points: (a)[0.5](E); (b)[0.5](E); (c)[0.5](M); (d)[1](M); (e)[0.1](E).

Calculate the following integrals (with a € R):

Li(a) = /00 dz 6(z — 7) sin(azx)

D(a) = / dr'dz?da® 6(x — y) [x[2, withy = (a,1,2)7
R3

1
a + cos?(x/2)

I3(a) = /Oadasé(x — )
Iy(a) = /deé(a:Q — 67 + 8)V/esr

Is(a) = / do'dz?6(x —ay)x -y, withy = (1,3). Remark: 6(x) = §(z")d(x?).
R2

[Check your results: I;(3) =1, Ir(1) =6, I3(m) = 5=, I4(In2) =1, I5(1) = 10]

Example Problem 2: Lorentz representation of the Dirac /-function [4]
Points: [4](M).

Explain why in the limit € — 07, the Lorentz peak function 0¢(x) given below is a representation
of the Dirac delta function 6(z). To this end, compute (i) the height, (ii) the width z,, (defined by
0°(2)
0"? Furthermore, calculate the functions (iv) ©¢(z) = [* _da/0°(2’) and (v) §'(z) = L6°(x).
Sketch ©¢, €0 and €20’ as functions of z/¢ in three separate sketches (one beneath the other,

1

= 50%(0), zw > 0) and (iii) the area of the peak. How do these quantities behave for ¢ —

2

with aligned y-axes and the same scaling for the x/e-axes).

Lorentz-Peak: ¢°(z) =

e/m
22+ e



https://moodle.lmu.de/course/view.php?id=17525

Hint: When calculating the peak weight, use the substitution x = e tan y.

Remark: Lorentzian functions are common in physics. Example: the energy spectrum of a discrete
quantum state, which is weakly coupled to the environment, has the form of a Lorentzian function,
the width of which is determined by the strength of the coupling to the environment. As the coupling
strength approaches zero, we obtain a  peak.

Example Problem 3: Series representation of hyperbolic functions [3]
Points: [3](E).

Compute the following series for y € R*, by expressing each as a geometric series in w = e~ Y.

i e*y(n+1/2)’ i 1)"e™v n+1/2) (<) Z e uInl
n=0

n=0 nez

Example Problem 4: Fourier series of the sawtooth function [2]
Points: [2](M).

Let f(z) be a sawtooth function, defined by f(z) = = for —7 < = < m, f(£w) = 0 and
f(z+27) = f(z). Calculate the Fourier coefficients f,, in the representation f(z) = L3 el*nef, .
How should k,, and L be chosen? Sketch the function f(z), as well as the sum of the n =1 and
n = —1 terms of the Fourier series (i.e. the first term of the corresponding sine series). [Check
your result: fg = %iﬂ'.]

Example Problem 5: Parseval’s identity and convolution [7]
Points: (a)[3](M); (b)[2](M); (c)[2](M).
Let f(r) be a sawtooth function, defined by f(z) = x for —7 < o < 7, f(£7w) = 0 and

f(xz +2m) = f(x). In the Fourier representation f(z) = 5= Y., ;€™ f,. its Fourier coefficients

are fo = 0, fuzo = 2mi(—1)"/n. (See example problem 4.) Let g(x) = sinz.

(a) Using this concrete example, check that Parseval’'s identity holds, by computing both the

integral [ dz f(z)g(x) and the sum (1/27) 3", f, Gn explicitly.

(b) Prove the famous identity > >, & = =, by computing the integral [" dz f?(z) in two
ways: first, by direct integration, and second, by expressing it as a sum over Fourier modes
using Parseval’s identity.

(c) Calculate the convolution (f % g)(x) both by directly computing the convolution integral and
by using the convolution theorem and a summation of Fourier coefficients.

[Total Points for Example Problems: 19]

Homework Problem 1: Integrals with ¢ function [4]

Points: (a)[0.5](E); (b)[0-5](E); (c)[0.5](M); (d)[1](M); (e)[1](A); (F)[0.5](E).



Calculate the following integrals (with a € R, n € N):

(a) [1(a):/1 dzo(z — 2) (a” + 3)

(b) Ix(a) = /R2 dz'dz?6(x —y) (z' + 222 7%, with y=(3,a)"
(c) Ig(a):/l dzv2 42z 0(ax —2), with a#0
(d) Ii(a) = /_oo dzd(37" = 9)(1 — z)

(e}

97 /2
() I(n) = / dz cos(nz) & (sin z)

—7/2

(f) Is(a) = / dr'da? §(x — y)e”xHQ, with y = (a, —a)”
R2

[Check your results: [,(3) = 12, Io(—5) =4, I3(2) = 3, [4(3) = 5, Is(7) = 1, Is(-5) =e¢]
Homework Problem 2: Representations of the Dirac /-function [4]
Points: [4](M).

Explain why in the limit ¢ — 0%, the peak-shaped function 6¢(z) given below is a representation
of the Dirac delta function 6(z). To this end, compute (i) the height, (ii) the width z,, (defined by
6¢(zw) = 30(0), 2 > 0) and (iii) the area of the peak. How do these quantities behave for € —
0*? Furthermore, calculate the functions (iv) ©¢(z) = [* _da/0°(2’) and (v) §'(z) = L6°(x).
Sketch ©F, €5 and 2§ as functions of z /¢ in three separate sketches (one beneath the other,
with aligned y-axes and the same scaling for the x/e-axes).

1 1

e cosh?[z/(26)]

Hint: When calculating the peak weight, use the substitution y = tanh[z/(2¢)].

Remark: In condensed matter physics and nuclear physics the function §¢(z) plays an important
role: it arises as the derivative of the so-called Fermi function, f(F) = m = ekT(—F),
with —L f(E) = §*=T(E), where f(E) is the occupation probability of a fermionic single-particle
state with energy E as function of the system’s temperature T' (kg is the so-called Boltzmann
constant). In the limit of zero temperature, 7' — 0, the derivative of the Fermi function reduces
to a Dirac d-function.

Derivative of the Fermi function: 0°(x)

Homework Problem 3: Series representation of the periodic § function [5]
Points: (a)[0.5](E); (b)[0.5](M); (c)[1.5](A); (d)[0.5](E); (e)[1](A); (f)[0.5](E); (g)[0.5](E)
Show that the function 6¢(z), defined by

1 .
56(17)23261”5_6““‘, k=2mn/L, neZ, wzelLeR, 0<ek L, (1)
2



has the following properties:

(a) o(x)=06(x+1L). (2)
L/2
(b) / dzo“(x) =1. Hint: Treat k =0 and k # 0 separately in Z (3)
—L/2 k
1 [1+w  1+w] 1 1 — e me/L
(z) = — =— 4
(c) () 2L L —w 11— @} L1+ e4me/L — 2e=2m¢/L cos(2mx /L)’ *)

where w = e27(iz=€)/L gnd 75 = 27 (—iz—€)/L
Hint: Write out the sum in Eq. (1) as a geometric series in powers of w and w.

(d) limo“(x) =0 forxz # mL, withm € Z. Hint: Start from Eq. (4).

e—0

e/m

(e) (x) ~ o for |z|/L < 1lande/L < 1.

Hint: Taylor expand the numerator in Eq. (4) up to first order in € = 27e/L, and the denominator
up to second order in € and Z = 27x /L.

(f) Sketch the function 6°(z) qualitatively for ¢/L < 1 and = € [-%L, IL].

(g) Deduce that in the limit of € — 0, 6°(z) represents a periodic § function, with

§(x) = %Zeik‘” = Z d(x —mlL) .

MEZ

Homework Problem 4: Fourier series [4]
Points: (a)[2](E); (b)[2](M)

Determine the Fourier series for the following periodic functions, i.e. calculate the Fourier coef-
ficients f,, in the representation f(x) = 1> e"*®f,. How should k, and L be chosen in each

L
case? Sketch the functions first.

4r for —w<x<O0,

d +27) = )
2z for 0<xr<m, and f(z+2m) = /()

(a) f(z) =|sinzl, (b) f(z) = {

[Check your results: (a) fs = —2, (b) f5 = (2 — 9in).]
Homework Problem 5: Computing an infinite series using the convolution theorem [1]
Points: (a)[0.5](E); (b)[0.5](M); (c)[2](A,Bonus)

This problem illustrates how a complicated sum may be calculated explicitly using the convolution
theorem.

Consider the periodic function f.(t) = f,(0)e" for t € [0,7) and f(t 4+ 7) = f(t), with f,(0) =
1/(e"™ —1). Take both v and 7 to be positive numbers, so that f..(0) = 0.

(a) Consider a Fourier series representation of f.(t) of the following form:

1 S ~ T .
L =2 et = / dte“n (1), with w, =277, n€ L.
T o 0



Show that the Fourier coefficients are given by f., = 1/(iw, + 7).

Use this result and the convolution theorem to express the following series as a convolution
of f, and f_,:

o

Sty =)

n=—oo

e—iwnt

S / dt'f, (¢t —t') f (1) (5)

w292

Sketch the functions f. (¢t —t') and f_.(t') occurring in the convolution theorem as functions
of ¢/, for t' € [—7,27]. Assume 0 < ¢t < 7 and show that the convolution integral (5) is given
by the following expression:

7 [sinh (y (¢ — 7)) — sinh ()]

S = 27[1 — cosh (y7)]

Hint: The integral [ d¢’ involves an interval of ¢’ values for which ¢ —¢' lies outside of [0, 7).
It is therefore advisable to split the integral into two parts, with fot dt’ and f; de’.

[Total Points for Homework Problems: 18]




