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(b)[2](E/M/A) means: problem (b) counts 2 points and is easy/medium hard/advanced

Suggestions for central tutorial: example problems 1, 3(a), 4, 5.
Videos exist for example problems 4 (C6.2.1), 5 (C6.3.5).

Example Problem 1: Integrals with δ function [3]
Points: (a)[0.5](E); (b)[0.5](E); (c)[0.5](M); (d)[1](M); (e)[0.1](E).

Calculate the following integrals (with a ∈ R):

(a) I1(a) =

� ∞
−∞

dx δ(x− π) sin(ax)

(b) I2(a) =

�
R3

dx1dx2dx3 δ(x− y) ‖x‖2 , with y = (a, 1, 2)T

(c) I3(a) =

� a

0

dx δ(x− π)
1

a+ cos2(x/2)

(d) I4(a) =

� 3

0

dx δ(x2 − 6x+ 8)
√

eax

(e) I5(a) =

�
R2

dx1dx2 δ(x− ay)x · y , with y = (1, 3)T . Remark: δ(x) = δ(x1)δ(x2).

[Check your results: I1(
1
2
) = 1, I2(1) = 6, I3(π) = 1

2π
, I4(ln 2) = 1, I5(1) = 10.]

Example Problem 2: Lorentz representation of the Dirac δ-function [4]
Points: [4](M).

Explain why in the limit ε→ 0+, the Lorentz peak function δε(x) given below is a representation
of the Dirac delta function δ(x). To this end, compute (i) the height, (ii) the width xw (defined by
δε(xw) = 1

2
δε(0), xw > 0) and (iii) the area of the peak. How do these quantities behave for ε→

0+? Furthermore, calculate the functions (iv) Θε(x) =
� x
−∞ dx′δε(x′) and (v) δ′ε(x) = d

dx
δε(x).

Sketch Θε, εδε and ε2δ′ε as functions of x/ε in three separate sketches (one beneath the other,
with aligned y-axes and the same scaling for the x/ε-axes).

Lorentz-Peak: δε(x) =
ε/π

x2 + ε2
.
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Hint: When calculating the peak weight, use the substitution x = ε tan y.
Remark: Lorentzian functions are common in physics. Example: the energy spectrum of a discrete
quantum state, which is weakly coupled to the environment, has the form of a Lorentzian function,
the width of which is determined by the strength of the coupling to the environment. As the coupling
strength approaches zero, we obtain a δ peak.

Example Problem 3: Series representation of hyperbolic functions [3]
Points: [3](E).

Compute the following series for y ∈ R+, by expressing each as a geometric series in ω ≡ e−y.

(a)
∞∑
n=0

e−y(n+1/2), (b)
∞∑
n=0

(−1)ne−y(n+1/2), (c)
∑
n∈Z

e−y|n|.

Example Problem 4: Fourier series of the sawtooth function [2]
Points: [2](M).

Let f(x) be a sawtooth function, defined by f(x) = x for −π < x < π, f(±π) = 0 and
f(x+2π) = f(x). Calculate the Fourier coefficients f̃n in the representation f(x) = 1

L

∑
n eiknxf̃n.

How should kn and L be chosen? Sketch the function f(x), as well as the sum of the n = 1 and
n = −1 terms of the Fourier series (i.e. the first term of the corresponding sine series). [Check
your result: f̃6 = 1

3
iπ.]

Example Problem 5: Parseval’s identity and convolution [7]
Points: (a)[3](M); (b)[2](M); (c)[2](M).

Let f(x) be a sawtooth function, defined by f(x) = x for −π < x < π, f(±π) = 0 and
f(x + 2π) = f(x). In the Fourier representation f(x) = 1

2π

∑
n∈Z einxf̃n, its Fourier coefficients

are f̃0 = 0, f̃n6=0 = 2πi(−1)n/n. (See example problem 4.) Let g(x) = sinx.

(a) Using this concrete example, check that Parseval’s identity holds, by computing both the

integral
� π
−π dx f(x)g(x) and the sum (1/2π)

∑
n f̃n g̃n explicitly.

(b) Prove the famous identity
∑∞

n=1
1
n2 = π2

6
, by computing the integral

� π
−π dx f 2(x) in two

ways: first, by direct integration, and second, by expressing it as a sum over Fourier modes
using Parseval’s identity.

(c) Calculate the convolution (f ∗ g)(x) both by directly computing the convolution integral and
by using the convolution theorem and a summation of Fourier coefficients.

[Total Points for Example Problems: 19]

Homework Problem 1: Integrals with δ function [4]
Points: (a)[0.5](E); (b)[0.5](E); (c)[0.5](M); (d)[1](M); (e)[1](A); (f)[0.5](E).
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Calculate the following integrals (with a ∈ R, n ∈ N):

(a) I1(a) =

� 4

1

dx δ(x− 2) (ax + 3)

(b) I2(a) =

�
R2

dx1dx2 δ(x− y) (x1 + x2)2 e3−x
1

, with y = (3, a)T

(c) I3(a) =

� 1

−1
dx
√

2 + 2x δ(ax− 2) , with a 6= 0

(d) I4(a) =

� ∞
−∞

dx δ(3−x − 9)(1− xa)

(e) I5(n) =

� 9π/2

−π/2
dx cos(nx) δ (sinx)

(f) I6(a) =

�
R2

dx1dx2 δ(x− y)e‖x‖
2

, with y = (a,−a)T

[Check your results: I1(3) = 12, I2(−5) = 4, I3(2) = 1
2
, I4(3) = 1

ln 3
, I5(7) = 1, I6(

1√
2
) = e.]

Homework Problem 2: Representations of the Dirac δ-function [4]
Points: [4](M).

Explain why in the limit ε → 0+, the peak-shaped function δε(x) given below is a representation
of the Dirac delta function δ(x). To this end, compute (i) the height, (ii) the width xw (defined by
δε(xw) = 1

2
δε(0), xw > 0) and (iii) the area of the peak. How do these quantities behave for ε→

0+? Furthermore, calculate the functions (iv) Θε(x) =
� x
−∞ dx′δε(x′) and (v) δ′ε(x) = d

dx
δε(x).

Sketch Θε, εδε and ε2δ′ε as functions of x/ε in three separate sketches (one beneath the other,
with aligned y-axes and the same scaling for the x/ε-axes).

Derivative of the Fermi function: δε(x) =
1

4ε

1

cosh2[x/(2ε)]
.

Hint: When calculating the peak weight, use the substitution y = tanh[x/(2ε)].
Remark: In condensed matter physics and nuclear physics the function δε(x) plays an important
role: it arises as the derivative of the so-called Fermi function, f(E) = 1

eE/kBT+1
= ΘkBT (−E),

with − d
dE
f(E) = δkBT (E), where f(E) is the occupation probability of a fermionic single-particle

state with energy E as function of the system’s temperature T (kB is the so-called Boltzmann
constant). In the limit of zero temperature, T → 0, the derivative of the Fermi function reduces
to a Dirac δ-function.

Homework Problem 3: Series representation of the periodic δ function [5]
Points: (a)[0.5](E); (b)[0.5](M); (c)[1.5](A); (d)[0.5](E); (e)[1](A); (f)[0.5](E); (g)[0.5](E)

Show that the function δε(x), defined by

δε(x) =
1

L

∑
k

eikx−ε|k| , k = 2πn/L, n ∈ Z , x, ε, L ∈ R , 0 < ε� L , (1)
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has the following properties:

(a) δε(x) = δε(x+ L) . (2)

(b)

� L/2

−L/2
dx δε(x) = 1 . Hint: Treat k = 0 and k 6= 0 separately in

∑
k

. (3)

(c) δε(x) =
1

2L

[
1 + w

1− w
+

1 + w

1− w

]
=

1

L

1− e−4πε/L

1 + e−4πε/L − 2e−2πε/L cos(2πx/L)
, (4)

where w = e2π(ix−ε)/L and w = e2π(−ix−ε)/L.
Hint: Write out the sum in Eq. (1) as a geometric series in powers of w and w.

(d) lim
ε→0

δε(x) = 0 for x 6= mL, with m ∈ Z. Hint: Start from Eq. (4).

(e) δε(x) ' ε/π

ε2 + x2
for |x|/L� 1 and ε/L� 1 .

Hint: Taylor expand the numerator in Eq. (4) up to first order in ε̃ = 2πε/L, and the denominator
up to second order in ε̃ and x̃ = 2πx/L.

(f) Sketch the function δε(x) qualitatively for ε/L� 1 and x ∈ [−7
2
L, 7

2
L].

(g) Deduce that in the limit of ε→ 0, δε(x) represents a periodic δ function, with

δ0(x) =
1

L

∑
k

eikx =
∑
m∈Z

δ(x−mL) .

Homework Problem 4: Fourier series [4]
Points: (a)[2](E); (b)[2](M)

Determine the Fourier series for the following periodic functions, i.e. calculate the Fourier coef-
ficients f̃n in the representation f(x) = 1

L

∑
n eiknxf̃n. How should kn and L be chosen in each

case? Sketch the functions first.

(a) f(x) = | sinx|, (b) f(x) =

{
4x for −π ≤ x < 0 ,

2x for 0 ≤ x < π ,
and f(x+ 2π) = f(x).

[Check your results: (a) f̃3 = − 2
35

, (b) f̃3 = 2
9
(2− 9iπ).]

Homework Problem 5: Computing an infinite series using the convolution theorem [1]
Points: (a)[0.5](E); (b)[0.5](M); (c)[2](A,Bonus)

This problem illustrates how a complicated sum may be calculated explicitly using the convolution
theorem.
Consider the periodic function fγ(t) = fγ(0)eγt for t ∈ [0, τ) and f(t + τ) = f(t), with fγ(0) =
1/(eγτ − 1). Take both γ and τ to be positive numbers, so that f±γ(0) ≷ 0.

(a) Consider a Fourier series representation of fγ(t) of the following form:

fγ(t) =
1

τ

∑
ωn

e−iωntf̃γ,n, f̃γ,n =

� τ

0

dteiωntfγ(t), with ωn = 2πn/τ, n ∈ Z.
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Show that the Fourier coefficients are given by f̃γ,n = 1/(iωn + γ).

(b) Use this result and the convolution theorem to express the following series as a convolution
of fγ and f−γ:

S(t) =
∞∑

n=−∞

e−iωnt

ω2
n + γ2

= −τ
� τ

0

dt′fγ (t− t′) f−γ (t′) . (5)

(c) Sketch the functions fγ(t− t′) and f−γ(t
′) occurring in the convolution theorem as functions

of t′, for t′ ∈ [−τ, 2τ ]. Assume 0 ≤ t ≤ τ and show that the convolution integral (5) is given
by the following expression:

S(t) =
τ
[
sinh (γ (t− τ))− sinh (γt)

]
2γ
[
1− cosh (γτ)

] .

Hint: The integral
� τ
0

dt′ involves an interval of t′ values for which t− t′ lies outside of [0, τ).

It is therefore advisable to split the integral into two parts, with
� t
0

dt′ and
� τ
t

dt′.

[Total Points for Homework Problems: 18]
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