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Example Problem 1: Addition theorems for sine and cosine [1]
Points: (a)[0.5](E); (b)[0.5](E).

Prove the addition theorems for sine and cosine, for any a, b ∈ C:

(a) cos(a+ b) = cos a cos b− sin a sin b, (b) sin(a+ b) = cos a sin b+ sin a cos b.

Hint: Use the Euler formula on both sides of ei(a+b) = eiaeib.

Example Problem 2: Taylor expansions [2]
Points: (a)[1](E); (b)[1](E); (c)[1](M,Bonus).

Taylor expand the following functions. You may choose to either calculate the coefficients of the
Taylor series by taking the corresponding derivatives, or to use the known Taylor expansions of
sin(x), cos(x), 1

1−x and ln(1 + x).

(a) f(x) = 1
1−sin(x)

around x = 0, up to and including fourth order.

(b) g(x) = sin(ln(x)) around x = 1, up to and including second order.

(c) h(x) = ecosx around x = 0, up to and including second order.

[Check your results: the highest-order term requested in each case is: (a) 2
3
x4, (b) −1

2
(x− 1)2, (c)

−1
2
ex2.]

Example Problem 3: Functions of matrices [4]
Points: (a)[0.5](E); (b)[1](E); (c)[1](M); (d)[1.5](M).

The purpose of this problem is to gain familiarity with the concept of a ‘function of a matrix’.
Let f be an analytic function, with Taylor series f(x) =

∑∞
l=0 clx

l, and A ∈ mat(R, n, n) a square
matrix, then f(A) is defined as f(A) =

∑∞
l=0 clA

l, with A0 = 1.

(a) A matrix A is called ‘nilpotent’ if an l ∈ N exists such that Al = 0. Then the Taylor series

of f(A) ends after l terms. Example with n = 2: Compute eA for A =
(

0 a
0 0

)
.

(b) If A2 ∝ 1, then A2m ∝ 1 and A2m+1 ∝ A, and the Taylor series for f(A) has the form

f01+ f1A. Example with n = 2: Compute eA explicitly for A = θσ̃, with σ̃ =
(

0 −1
1 0

)
.

[Check your result: if θ = −π
6

, then eA = 1
2

(√
3 1

−1
√
3

)
.]
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(c) If A is diagonalizable, then f(A) can be expressed in terms of its eigenvalues. Let T be the
similarity transformation that diagonalizes A, with diagonal matrix D = T−1AT and diagonal
elements D = diag(λ1, λ2, . . . , λn). Show that the following relations then hold:

f(A) = Tf(D)T−1 = T


f(λ1) 0 · · · 0

0 f(λ2)
. . .

...
...

. . .
. . . 0

0 · · · 0 f(λn)

T−1 .

Remark: Both equalities are to be established independently of each other.

(d) Now compute the matrix function eA from (b) using diagonalization, as in (c).

Example Problem 4: Exponential representation of 2-dimensional rotation matrix [1]
Points: (a)[0.5](E); (b)[0.5](E).

The matrix Rθ =
(

cos θ − sin θ
sin θ cos θ

)
describes a rotation by the angle θ in R2. Use the following ‘infinite

product decomposition’ to find an exponential representation of this matrix:

(a) A rotation by the angle θ can be represented as a sequence of m rotations, each by the angle
θ/m: Rθ = [R(θ/m)]

m. For m→∞ we have θ/m→ 0, thus the matrix R(θ/m) can be written
as R(θ/m) = 1+ (θ/m)σ̃ +O

(
(θ/m)2

)
Find the matrix σ̃.

(b) Now use the identity limm→∞[1 + x/m]m = ex to show that Rθ = eθσ̃.

Remark: Justification for this identity: We have ex = [ex/m]m = [1 + x/m +O
(
(x/m)2

)
]m.

In the limit m→∞ the terms of order O
(
(x/m)2

)
can be neglected.

[Check your result: does the Taylor series for eθσ̃ reproduce the matrix for Rθ given above?]

Remark: The procedure illustrated here, by which an infinite sequence of identical, infinitesimal
transformations is exponentiated, is a cornerstone of the theory of ‘Lie groups’, whose elements are
associated with continuous parameters (here the angle θ). In that context the Hermitian matrix
iσ̃ is called the ‘generator’ of the rotation.

Example Problem 5: Separation of variables [2]
Points: (a)[1](E); (b)[1](E).

A first-order differential equation is called autonomous if it has the form ẋ = f(x), i.e. the right
hand side is time independent (non-autonomous equations have ẋ = f(x, t)). Such an equation
can the solved by separation of variables.

(a) Consider the autonomous differential equation ẋ = x2 for the function x(t). Solve it by
separation of variables for two different initial conditions: (i) x(0) = 1 and (ii) x(2) = −1.
[Check your results: (i) x(−2) = 1

3
, and (ii) x(2) = −1.]

(b) Sketch your solutions qualitatively. Convince yourself that your sketches for the function x(t)
and its derivative ẋ(t) satisfy the relation specified by the differential equation.

Example Problem 6: Separation of variables: barometric formula [1]
Points: [1](E).
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The standard barometric formula for atmospheric pressure, p(x), as a function of the height, x, is

given by: dp(x)
dx

= −α p(x)
T (x)

. Solve this equation with initial value p(x0) = p0 for the case of a linear

temperature gradient, T (x) = T0 − b(x− x0).
[Check your result: if α, b, T0, x0, p0 = 1, then p(1) = 1.]

Example Problem 7: Linear homogeneous differential equation with constant coefficients
[2]
Points: [2](E).

Use an exponential ansatz to solve the following differential equation:

ẋ(t) = A · x(t) , A =
1

5

(
3 −4
−4 −3

)
, x(0) = (2, 1)T .

[Total Points for Example Problems: 13]

Homework Problem 1: Powers of Sine and Cosine [1]
Points: (a)[0.5](E); (b)[0.5](E)

Use the Euler-de Moivre identity to prove the following identities, for any a ∈ C:

(a) cos2 a = 1
2

+ 1
2

cos(2a) , sin2 a = 1
2
− 1

2
cos(2a) .

(b) cos3 a = 3
4

cos a+ 1
4

cos(3a) , sin3 a = 3
4

sin a− 1
4

sin(3a) .

Homework Problem 2: Taylor expansions [3]
Points: (a)[1](E); (b)[1](E); (c)[1](M)

Taylor expand the following functions. You may choose to either calculate the coefficients of the
Taylor series by taking the corresponding derivatives, or to use the known Taylor expansions of
sin(x), cos(x), 1

1−x and ln(1 + x).

(a) f(x) = cos(x)
1−x around x = 0. Keep all terms up to and including third order.

(b) g(x) = ecos(x2+x) about x = 0, up to and including third order.

(c) h(x) = e−x ln(x) around x = 1, up to and including third order.

[Check your results: the highest-order term requested in each case is: (a) 1
2
x3, (b) −ex3, (c)

4
3
e−1(x− 1)3.]

Homework Problem 3: Functions of matrices [3]
Points: (a)[0.5](E); (b)[1](E); (c)[1.5](M); (d)[1](A,Bonus).

Express each of the following matrix functions explicitly in terms of a matrix:

(a) eA, with A =

(
0 a 0
0 0 b
0 0 0

)
.

(b) eB, with B = bσ1 and σ1 =
(

0 1
1 0

)
, using the Taylor series of the exponential function.

[Check your result: if b = ln 2, then eB = 1
4

(
5 3
3 5

)
.]
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(c) The same function as in (b), now by diagonalizing B.

(d) eC , with C = iθΩ, where Ω = njSj, while n = (n1, n2, n3)T is a unit vector (‖n‖ = 1) and

Sj are the spin-1
2

matrices: S1 = 1
2

(
0 1
1 0

)
, S2 = 1

2

(
0 −i
i 0

)
, S3 = 1

2

(
1 0
0 −1

)
.

Hint: Start by computing Ω2 (for this, the property SiSj+SjSi = 1
2
δij1 of the spin-1

2
matrices

is useful), and then use the Taylor series of the exponential function.[
Check your result: if θ=−π

2
and n1 =−n2 =n3 = 1√

3
, then eC = 1√

6

(√
3−i 1−i

−1−i
√
3+i

)
.
]

Remark: The exponential form eC is a representation of SU(2) transformations, the group of all
special unitary transformations in C2. Its elements are characterized by three continuous real
parameters (here θ, n1 and n2, with n3 =

√
1− n2

1 − n2
2). The Sj matrices are ‘generators’ of

these transformations; they satisfy the SU(2) algebra, i.e. their commutators yield [Si, Sj] =
iεijkSk.

Homework Problem 4: Exponential representation 3-dimensional rotation matrix [4]
Points: (a)[1](E); (b)[1](M); (c)[1](M); (d)[1](A)

In R3, a rotation by an angle θ, about an axis whose direction is given by the unit vector n =
(n1, n2, n3), is represented by a 3× 3 matrix that has the following matrix elements:

(Rθ(n))ij = δij cos θ + ninj(1− cos θ)− εijk nk sin θ (εijk = Levi-Civita symbol) . (1)

The goal of the following steps is to supply a justification for Eq. (1).

(a) Consider first the three matrices Rθ(ei) for rotations by the angle θ about the three coordinate
axes ei, with i = 1, 2, 3. Elementary geometrical considerations yield:

Rθ(e1) =

(
1 0 0

0 cos θ − sin θ

0 sin θ cos θ

)
, Rθ(e2) =

(
cos θ 0 sin θ

0 1 0

− sin θ 0 cos θ

)
, Rθ(e3) =

(
cos θ − sin θ 0

sin θ cos θ 0

0 0 1

)
.

For each of these matrices, use an infinite product decomposition of the form Rθ(n) =
limm→∞[Rθ/m(n)]m to obtain an exponential representation of the form Rθ(ei) = eθτi . Find
the three 3×3 matrices τ1, τ2 and τ3. [Check your results: The τi commutators yield [τi, τj] =
εijkτk. This is the so-called SO(3) algebra, which underlies the representation theory of 3-
dimensional rotations. Moreover, τ 2

1 + τ 2
2 + τ 2

3 = −21.]

(b) Now consider a rotation by the angle θ about an arbitrary axis n. To find an exponential
representation for it using an infinite product decomposition, we need an approximation for
Rθ/m(n) up to first order in the small angle θ/m. It has the following form:

Rθ/m(n) = Rn1θ/m(e1)Rn2θ/m(e2)Rn3θ/m(e3) +O
(
(θ/m)2

)
. (2)

Intuitive justification: If the rotation angle θ/m is sufficiently small, the rotation can be
performed in three substeps, each about a different direction ei, by the ‘partial’ angle niθ/m.
The prefactors ni ensure that for n = ei (rotation about a coordinate axis i) only one of the
three factors in (2) is different from 1, namely the one that yields Rθ/m(ei); for example, for
n = e2 = (0, 1, 0)T : R0θ/m(e1)R1n2θ/m(e2)R0θ/m(e3) = Rn2θ/m(e2).
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Show that such a product decomposition of Rθ(n) yields the following exponential represen-
tation:

Rθ(n) = eθΩ , Ω = niτi =

 0 −n3 n2

n3 0 −n1
−n2 n1 0

 , (Ω)ij = −εijknk . (3)

(c) Show that Ω, the ‘generator’ of the rotation, has the following properties:

(Ω2)ij = ninj − δij, Ωl = −Ωl−2 for 3 ≤ l ∈ N. [Cayley-Hamilton theorem] (4)

Hint: First compute Ω2 and Ω3, then the form of Ωl>3 will be obvious.

(d) Show that the Taylor expansion of Rθ(n) = eθΩ yields the following expression,

Rθ(n) = 1+ Ω sin θ + Ω2(1− cos θ), (5)

and that its matrix elements correspond to Eq. (1).

Homework Problem 5: Separation of variables [2]
Points: (a)[1](E); (b)[1](E)

(a) Consider the differential equation y′ = −x2/y3 for the function y(x). Solve it by separation
of variables, for two different initial conditions: (i) y(0) = 1, and (ii) y(0) = −1. [Check your

result: (i) y(−1) =
(

7
3

)1/4
, (ii) y(−1) = −

(
7
3

)1/4
.]

(b) Sketch your solutions qualitatively. Convince yourself that your sketches for the function y(x)
and its derivative y′(x) satisfy the relation specified by the differential equation.

Homework Problem 6: Separation of variables: bacterial culture with toxin [4]
Points: (a)[1](E); (b)[1](M); (c)[1](E); (d)[1](E)

A bacterial culture is exposed to the effects of a toxin. The death rate induced by the toxin is
proportional to the number, n(t), of bacteria still alive in the culture at a time t and the amount of
toxin, T (t), remaining in the system, which is given by τn(t)T (t), where τ is a positive constant.
On the other hand, the natural growth rate of the bacteria in the culture is exponential, i.e. it
grows with a rate γn(t), with γ > 0. In total, the number of bacteria in the culture is given by
the differential equation

ṅ = γn− τnT (t), for t ≥ 0.

(a) Find the general solution to this linear DEQ, with initial condition n(0) = n0.

(b) Assume now that the toxin is injected into the system at a constant rate T (t) = at, where
a > 0. Use a qualitative analysis of the differential equation (i.e. without solving it explicitly)
to show that the bacterial population grows up to a time t = γ/(aτ), and decreases thereafter.
Furthermore, show that as t → ∞, n(t) → 0, i.e. the bacterial culture is practically wiped
out.
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(c) Now find the explicit solution, n(t), to the differential equation and sketch n(t) qualitatively
as a function of t. Convince yourself that the sketch fulfils the relation between n(t), ṅ(t) and
t that is specified by the differential equation. [Check your result: if τ = 1, a = 1, n0 = 1
and γ =

√
ln 2, then n(

√
ln 2) =

√
2.]

(d) Find the time th at which the number of bacteria in the culture drops to half the initial value.
[Check your result: if τ = 4, a = 2/ ln 2 and γ = 3, then th = ln 2.]

Homework Problem 7: Linear homogeneous differential equation with constant coeffi-
cients [2]
Points: [2](E).

Use an exponential ansatz to solve the following differential equation:

ẋ(t) = A · x(t) , A =
1

2

(
3 −1
−1 3

)
, x(0) = (1, 3)T .

[Total Points for Homework Problems: 19]
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