

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN FAKULTÄT FÜR PHYSIK

R: RECHENMETHODEN FÜR PHYSIKER, WISE 2021/22

Dozent: Jan von Delft

ÜBUNGEN: ANXIANG GE, NEPOMUK RITZ

https://moodle.lmu.de → Kurse suchen: 'Rechenmethoden'

Blatt 05: Mehrdimensionales Integrieren II. Felder I

Ausgabe: Mo 15.11.21 Zentralübung: Do 18.11.21 Abgabe: Do 25.11.21, 14:00 (b)[2](E/M/A) bedeutet: Aufgabe (b) zählt 2 Punkte und ist einfach/mittelschwer/anspruchsvoll Vorschläge für Zentralübung: Beispielaufgaben 2, 4, 7, 5.

Videos existieren für Beispielaufgaben 2 (C4.2.1).

Beispielaufgabe 1: Gauß-Integrale [3]

Punkte: (a)[1](M); (b)[1](M); (c)[1](M)

- (a) Zeigen Sie, dass das zweidimensionale Gauß-Integral $I=\int_{-\infty}^{\infty}\int_{-\infty}^{\infty}\mathrm{d}x\mathrm{d}y\,\mathrm{e}^{-(x^2+y^2)}$ den Wert $I=\pi$ hat. Hinweis: nutzen Sie Polarkoordinaten; das radiale Integral lässt sich mittels Substitution lösen.
- (b) Berechnen Sie nun das eindimensionale Gauß-Integral

$$I_0(a) = \int_{-\infty}^{\infty} dx e^{-ax^2} \quad (a \in \mathbb{R}, \ a > 0).$$

Hinweis: $I = [I_0(1)]^2$. Erklären Sie, warum! [Ergebniskontrolle: $I_0(\pi) = 1$.]

(c) Berechnen Sie das eindimensionale Gauß-Integral mit linearem Term im Exponenten:

$$I_1(a,b) = \int_{-\infty}^{\infty} dx \, e^{-ax^2 + bx} \quad (a, b \in \mathbb{R}, a > 0).$$

Hinweis: Schreiben Sie den Exponenten in die Form $-ax^2 + bx = -a(x-C)^2 + D$ (dies wird **quadratische Ergänzung** genannt), substituieren Sie dann y = x - C, und nutzen Sie das Ergebnis aus (b). [Ergebniskontrolle: $I_1(1,2) = \sqrt{\pi}e$.]

Beispielaufgabe 2: Fläche einer Ellipse (verallgemeinerte Polarkoordinaten) [2] Punkte: (a)[1](M); (b)[1](E)

(a) Gegeben sei eine Funktion $f: \mathbb{R} \to \mathbb{R}$ und zwei positive reelle Zahlen a, b. Betrachten Sie das zwei-dimensionale Integral von $f\left((x/a)^2+(y/b)^2\right)$ über alle $(x,y)\in\mathbb{R}^2$. Zeigen Sie, dass es sich schreiben lässt als

$$I = \int_{\mathbb{R}^2} dx \, dy \, f((x/a)^2 + (y/b)^2) = 2\pi ab \int_0^\infty d\mu \, \mu \, f(\mu^2) ,$$

mittels einer Transformation von kartesischen zu verallgemeinerten Polarkoordinaten, definiert durch:

$$x = \mu a \cos \phi, \qquad \qquad y = \mu b \sin \phi ,$$

$$\mu^2 = (x/a)^2 + (y/b)^2, \qquad \phi = \arctan(ay/bx).$$

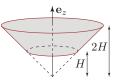
Hinweis: Für a=b=1 entsprechen sie Polarkoordinaten. Für $a\neq b$ ist die lokale Basis *nicht* orthogonal!

(b) Berechnen Sie, durch geeignete Wahl der Funktion f, die Fläche einer Ellipse mit Halbachsen a und b, definiert durch $(x/a)^2 + (y/b)^2 \le 1$.

Beispielaufgabe 3: Volumen und Trägheitsmoment (Zylinderkoordinaten) [2] Punkte: (a)[1](E); (b)[1](E)

Das Trägheitsmoment eines starren Körpers bezüglich einer Drehachse ist definiert als $I = \int_V dV \, \rho_0(\mathbf{r}) d_\perp^2(\mathbf{r})$, wobei $\rho_0(\mathbf{r})$ die Dichte am Punkt \mathbf{r} ist, und $d_\perp(\mathbf{r})$ der senkrechte Abstand von \mathbf{r} zur Drehachse.

 $K=\{{f r}\in {\Bbb R}^3\,|\, H\le z\le 2H, \sqrt{x^2+y^2}\le az\}$ sei ein homogener, auf der z-Achse zentrierten Kegelstumpf (Kegel ohne Spitze). Berechnen Sie in Zylinderkoordinaten



- (a) sein Volumen, $V_K(a)$, und
- (b) sein Trägheitsmoment, $I_K(a)$, bezüglich der z-Achse,

als Funktionen des dimensionslosen, positiven Skalenfaktors a, des Längenparameters H, und der Masse M des Kegelstumpfs. [Kontrollergebnisse: $V_K(3)=21\pi H^3$, $I_K(1)=\frac{93\pi}{70}MH^2$.]

Beispielaufgabe 4: Volumen einer Boje (Kugelkoordinaten) [2] Punkte: (a)[1](E); (b)[1](M)

Betrachten Sie eine Boje, mit Spitze am Ursprung, die von oben begrenzt wird durch eine am Ursprung zentrierte Kugel, mit $x^2+y^2+z^2\leq R^2$, und von unten durch einen Kegel, mit Spitze am Ursprung, mit $z\geq a\sqrt{(x^2+y^2)}$.

- (a) Zeigen Sie, dass der halbe Öffnungswinkel des Kegels durch $\widetilde{\theta}=\arctan(1/a)$ gegeben ist.
- (b) Berechnen Sie mittels Kugelkoordinaten das Volumen V(R,a) der Boje als Funktion von R und a. [Kontrollergebnis: $V(2,\sqrt{3})=(16\pi/3)(1-\sqrt{3}/2)$.]

Beispielaufgabe 5: Flächenintegral: Fläche einer Sphäre [3]

Punkte: (a)[2](M); (b)[1](E)

Betrachten Sie eine Sphäre (=Kugeloberfläche) S mit Radius R. Berechnen Sie ihre Fläche, A_S , mittels (a) kartesichen Koordinaten und (b) Kugelkoordinaten, wie folgt:

(a) Wählen Sie kartesische Koordinaten, mit Ursprung im Zentrum der Sphäre. Deren Fläche ist doppelt so groß wie die der Halbsphäre S_+ oberhalb der xy-Ebene. S_+ kann durch

$$\mathbf{r}: D \to S_+, \qquad (x,y)^T \mapsto \mathbf{r}(x,y) = (x,y,\sqrt{R^2 - x^2 - y^2})^T,$$

parametrisiert werden, wobei $D=\{(x,y)^T\in\mathbb{R}^2|x^2+y^2< R^2\}$ eine Scheibe mit Radius R ist. Berechnen Sie mittels dieser Parametrisierung die Fläche der Sphäre als $A_S=2\int_D \mathrm{d}x\mathrm{d}y\,\|\partial_x\mathbf{r}\times\partial_y\mathbf{r}\|.$

2

(b) Wählen Sie nun Kugelkoordinaten, mit folgender Parametrisierung der Sphäre,

$$\mathbf{r}: U \to S, \qquad (\theta, \phi)^T \mapsto \mathbf{r}(\theta, \phi) = R(\sin\theta\cos\phi, \sin\theta\sin\phi, \cos\theta)^T,$$

wobei $U = (0, \pi) \times (0, 2\pi)$. Berechnen Sie ihre Fläche mittels $A_S = \int_U d\theta d\phi \|\partial_\theta \mathbf{r} \times \partial_\phi \mathbf{r}\|$.

Beispielaufgabe 6: Gradient von $\ln(1/r)$ [1]

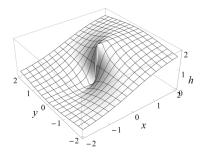
Punkte: [1](E)

Gegeben ist das Skalarfeld $\varphi(\mathbf{r})=\ln{(r^{-1})}$, wobei $r=\sqrt{x^2+y^2+z^2}$. In welchen Punkten im Raum gilt $\|\nabla\varphi\|=1$?

Beispielaufgabe 7: Gradient einer Bergflanke [4]

Punkte: (a-h)[je 0.5](M)

Ein Wanderer trifft auf die in der Figur dargestellte Bergflanke, deren Höhe $h(\mathbf{r})$ durch $h(\mathbf{r}) = \frac{x}{r} + 1$ beschrieben wird, mit $\mathbf{r} = (x,y)^T$ und $r = \sqrt{x^2 + y^2}$. Beschreiben Sie deren Topografie anhand folgender Fragen (unter Bezugnahme auf die Eigenschaften des Gradientenvektors $\nabla h_{\mathbf{r}}$):



- (a) Berechnen Sie den Gradienten, $\nabla h_{\mathbf{r}}$, und das totale Differential, $\mathrm{d}h_{\mathbf{r}}(\mathbf{n})$, für den Vektor $\mathbf{n}=(n_x,n_y)^T$.
- (b) Der Wanderer steht am Punkt $\mathbf{r}=(x,y)^T$. In welche Richtung steigt der Hang am steilsten an?
- (c) In welche Richtung verlaufen hier die Konturlinien?
- (d) Skizzieren Sie einen Konturplot der Bergflanke, auf dem zusätzlich die Gradientenvektoren $\nabla h_{\mathbf{r}}$ an den Punkten $\mathbf{r}_1 = (-1,1)^T$, $\mathbf{r}_2 = (0,\sqrt{2})^T$ und $\mathbf{r}_3 = (1,1)^T$ eingezeichnet sind.
- (e) Gibt es im positiven Quadranten $(x,y\geq 0)$ eine Konturlinie, für die x=y? Wenn ja, auf welcher Höhe liegt sie?
- (f) Finden Sie eine Gleichung für die Konturlinie auf Höhe $h(\mathbf{r})=H$ im positiven Quadranten $(x,y\geq 0)$.
- (g) Wo ist die Bergflanke am wenigsten steil? Was ist ihre Höhe dort?
- (h) Wo ist sie am steilsten? Beschreiben Sie detailliert, wie die Topographie in der Nähe dieses Punktes von x und y abhängt.

[Gesamtpunktzahl Beispielaufgaben: 17]

Hausaufgabe 1: Gauß-Integrale [3]

Punkte: (a)[1](M); (b)[1](M); (c)[1](M)

Berechnen Sie folgende Gauß-Integrale:

(a)
$$I_1(c) = \int_{-\infty}^{\infty} dx \ e^{-3(x+c)x}$$
 (b) $I_2(c) = \int_{-\infty}^{\infty} dx \ e^{-\frac{1}{2}(x^2+3x+\frac{c}{4})}$

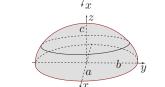
(c)
$$I_3(c) = \int_{-\infty}^{\infty} dx e^{-2(x+3)(x-c)}$$

[Ergebniskontrolle: $I_1(2)=\sqrt{\frac{\pi}{3}}\mathrm{e}^3$, $I_2(1)=\sqrt{2\pi}\,\mathrm{e}$, $I_3(-3)=\sqrt{\frac{\pi}{2}}$.]

Hausaufgabe 2: Flächenintegral für Volumen (verallgemeinerte Polarkoordinaten) [2] Punkte: (a)[2](M); (b)[2](M,Bonus); (c)[0](A,Optional)

Nutzen Sie im Folgenden verallgemeinerte Polarkoordinaten in zwei Dimensionen, definiert durch $x=\mu a\cos\phi,\ y=\mu b\sin\phi,\ {\rm mit}\ a,b\in\mathbb{R},\ a>b>0.$ Berechnen Sie das Volumen V(a,b,c) folgender Körper Z,E und K, als Funktion der Längenparameter a,b und c.

(a) Z ist ein Zelt mit ellipsförmigem Boden, mit Halbachsen a und b. Sein Dach wird durch die Höhenfunktion $h_Z(x,y)=c\left[1-(x/a)^2-(y/b)^2\right]$ beschrieben.



- (b) E ist eine Ellipsoide mit Halbachsen a, b und c, definiert durch $(x/a)^2 + (y/b)^2 + (z/c)^2 \le 1$.
- (c) K ist ein Kegel mit Höhe c und ellipsförmiger Basis, mit Halbachsen a und b. Alle Querschnitte parallel zur Basis sind ebenfalls ellipsförmig. Hinweis: Ergänzen Sie die verallgemeinerten Polarkoordinaten um eine weitere Koordinate, z (analog zum Übergang von Polar- zu Zylinderkoordinaten).

[Kontrollergebnisse für $a=1/\pi$, b=2, c=3: (a) $V_Z=3$, (b) $V_E=8$, (c) $V_K=2$.]

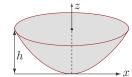
Hausaufgabe 3: Volumen und Trägheitsmoment (Zylinderkoordinaten) [4] Punkte: (a)[0](M,Optional); (b)[4](M); (c)[3](A,Bonus)

Betrachten Sie die unten beschriebenen homogenen, starren Körper Z, P und S, alle mit Dichte ρ_0 . Berechnen Sie mittels Zylinderkoordinaten für jeden das Volumen, V(a), und das Trägheitsmoment, $I(a) = \rho_0 \int_V \mathrm{d}V \, d_\perp^2$, bezüglich der Symmetrieachse, als Funktionen des dimensionslosen, positiven Skalenfaktors a, des Längenparameters R, und der Masse des Körpers, M.

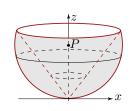
(a) Z ist ein Hohlzylinder mit innerem Radius R, äußerem Radius aR, und Höhe 2R. [Kontrollergebnisse: $V_Z(2)=6\pi R^3$, $I_Z(2)=\frac{15}{6}MR^2$.]

4

(b) P ist ein Paraboloid mit Höhe h=aR und Krümmung 1/R, definiert durch $P=\{{\bf r}\in\mathbb{R}^3\,|\,0\le z\le h,(x^2+y^2)/R\le z\}.$ [Kontrollergebnisse: $V_P(2)=2\pi R^3$, $I_P(2)=\frac{2}{3}MR^2$.]



(c) S ist die Schüssel, die entsteht, wenn aus der Kugel $K_1=\{\mathbf{r}\in\mathbb{R}^3|\ x^2+y^2+(z-aR)^2\leq a^2R^2\}$, mit Radius aR und zentriert am Punkt $P:(0,0,aR)^T$, ein Kegel $K_2=\{\mathbf{r}\in\mathbb{R}^3|\ (x^2+y^2)\leq (a-1)z^2, a\geq 1\}$, mit Spitze am Ursprung und symmetrisch um die z-Achse, ausgestanzt wird. [Kontrollergebnisse: $V_S\left(\frac{4}{3}\right)=\frac{16}{9}\pi R^3$, $I_S\left(\frac{4}{3}\right)=\frac{14}{15}MR^2$. Was erhalten Sie für a=1? Warum?]



Hinweis: Finden Sie zunächst für gegebenes z die radialen Integrationsgrenzen, $\rho_1(z) \le \rho \le \rho_2(z)$, dann die z-Integrationsgrenzen, $0 \le z \le z_m$. Wie lautet der maximale z-Wert, z_m ?

Hausaufgabe 4: Volumenintegral über Viertelkugel (Kugelkoordinaten) [2] Punkte: [2](M)

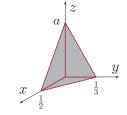
Berechnen Sie mittels Kugelkoordinaten das Volumenintegral $F(R)=\int_K \mathrm{d}V f(\mathbf{r})$ der Funktion $f(\mathbf{r})=xy$ über die Viertelkugel K, definiert durch $x^2+y^2+z^2\leq R^2$ und $x,y\geq 0$. Skizzieren Sie K. [Kontrollergebnis: $F(2)=\frac{64}{15}$.]

Hausaufgabe 5: Flächenintegral: Fläche der schrägen Seite einer rechteckigen Pyramide [2]

Punkte: [2](M).

Betrachten Sie die skizzierte Pyramide. Finden Sie eine Parametrisierung ihrer schrägen Seite, $F_{Schräge}$, in der Form

$$\mathbf{r}: U \subset \mathbb{R}^2 \to F_{\mathsf{Schräge}} \subset \mathbb{R}^3, \quad (x,y)^T \mapsto \mathbf{r}(x,y),$$



d.h. bestimmen Sie den Definitionsbereich U und den kartesischen Vektor $\mathbf{r}(x,y)$. Berechnen Sie dann den Flächeninhalt der schrägen Seite durch $A_{\mathsf{Schräge}} = \int_U \mathrm{d}x \mathrm{d}y \, \|\partial_x \mathbf{r} \times \partial_y \mathbf{r}\|.$

[Ergebniskontrolle: für a=2 ist $A_{\mathsf{Schräge}} = \frac{\sqrt{53}}{12}.$]

Hausaufgabe 6: Gradient für $\varphi(r)$ [2]

Punkte: (a)[1](E); (b)[1](E)

- (a) Für $\mathbf{r} \in \mathbb{R}^3$ und $r = \sqrt{x^2 + y^2 + z^2} = \|\mathbf{r}\|$, berechnen Sie ∇r und ∇r^2 .
- (b) $\varphi(r)$ sei eine allgemeine, zweimal differenzierbare Funktion von r. Berechnen Sie $\nabla \varphi(r)$, ausgedrückt durch $\varphi'(r)$, die erste Ableitung von φ nach r.

5

Hausaufgabe 7: Gradient eines Tals [4]

Punkte: $(a-f)[je \ 0.5](M); (g)[1](M)$

Ein Wanderer trifft auf das in der Figur dargestellte Tal, dessen Höhe durch $h(\mathbf{r}) = \mathrm{e}^{xy}$ beschrieben wird, mit $\mathbf{r} = (x,y)^T$. Beschreiben Sie die Topografie des Tals anhand folgender Fragen (unter Bezugnahme auf die Eigenschaften des Gradientenvektors $\nabla h_{\mathbf{r}}$):



- (a) Berechnen Sie den Gradienten $\nabla h_{\mathbf{r}}$ und das totale Differential $\mathrm{d}h_{\mathbf{r}}(\mathbf{n})$ für den Vektor $\mathbf{n} = (n_x, n_y)^T$.
- (b) Sie stehen am Punkt $\mathbf{r} = (x, y)^T$. In welche Richtung steigt der Hang am steilsten an?
- (c) In welche Richtung verlaufen hier die Konturlinien?
- (d) Skizzieren Sie einen Konturplot der Talflanke, auf dem zusätzlich die Gradientenvektoren $\nabla h_{\mathbf{r}}$ an den Punkten $\mathbf{r}_1 = \frac{1}{\sqrt{2}}(-1,1)^T$, $\mathbf{r}_2 = (0,1)^T$ und $\mathbf{r}_3 = \frac{1}{\sqrt{2}}(1,1)^T$ eingezeichnet sind.
- (e) Finden Sie eine Gleichung für die Konturlinie auf Höhe $h(\mathbf{r}) = H(>0)$.
- (f) Wo ist die Talflanke am flachsten? Was ist ihre Höhe dort?
- (g) Wo ist sie am steilsten, für einen gegebenen Abstand $r = ||\mathbf{r}||$ vom Ursprung?

[Gesamtpunktzahl Hausaufgaben: 19]