
Vorlesung Biophysik Braun - Neurronale Netze

Overview:

- Anatomy of Neuronal Networks

- Formal Neural Networks

- Are they realistic?

-  Oscillations and Phase locking

- Mapping problem: Kohonen Networks

Neural Networks

Nice books to start reading:

e.g. Manfred Spitzer: Geist im Netz

Brick-like text-books:

From Neuron to Brain by John G. Nicholls, John G.

Nicholls, Bruce G. Wallace, Paul A. Fuchs, A. Robert

Martin

Principles of Neural Science by Eric R. Kandel, James

H. Schwartz, Thomas M. Jessell

Models of Neural Networks I-III, Domany, van Hem-

men, Schulten, Springer 1991,1995
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The  brain  mostly  consists  NOT  of  neu-
rons, there are about 10-50 times more
glia  (greek:  “glue”)  cells  in  the  central
nervous tissue of vertebrates.

The function of glia is not understood in
full  detail,  but  their  active  role  in  signal
transduction in the brain is probably
small.

Electrical and chemical synapses allow
for excitatory or inhibitory stimulation.
They most often sit at the dendritic tree,
but some also at the surface of a neuron.

In  many  neuron  types,  these  inputs  are
can  trigger  an  action  potential  in  the
axon which makes connections with
other dendrites.

However, only recently, it was found, that
action  potentials  also  travel  back  into
the dendritic tree, a crucial prerequisite
for learning.

Neuroanatomy

From: Principles of Neural Science

Kandel, Schwartz, Jessel, 1991
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Neuroanatomy
The brain consists of about 1011 neurons,
divided  into  approx.  10,000  cell  types  with
highly diverse functions.

The cortex,  the outer “skin” of the brain,
appears  to  be  very  similar  all  over  the  brain,
only more detailed analysis also shows here spe-
cialization in different regions of the cortex. 

Most of the brain volume are “wires” in the
white matter of the brain.

From: Principles of Neural Science

Kandel, Schwartz, Jessel, 1991
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Cortex Layers

The  Cortex  is  organized  into
layers which are numbered
from I to VI.

Different types of cells are
found in the layers.

The  layer  structure  differs  for
different parts of the brain.
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Cortex Layers
I.  Molecular  layer:  few  scat-
tered neurons, extensions of
apical  dendrites  and  horizon-
tally oriented axons.

II. External granular layer:
small  pyramidal  neurons  and
numerous stellate neurons.

III.  External  pyramidal  layer:
predominantly small and
medium  sized  pyramidal  neu-
rons  and  non-pyramidal  neu-
rons.  

I-III are main target and Layer
III  the  principal  source  of  of
intercortical connections.

From: Principles of Neural Science

Kandel, Schwartz, Jessel, 1991
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Thalamus

Motor

Thalamus

IV. Internal granular layer: stellate and pyra-
midal neurons. Main target from thamalus. 

V. Internal pyramidal layer: large pyramidal
neurons and interneurons. Source of motor-
related signals.

VI. Multiform layer contains few large pyra-
midal  neurons  and  many  small  spindle-like
pyramidal and multiform neurons. Source of
thalamus connections.
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A  typical  synapse  delivers  about  10 -
30 pA  into  the  neuron.  In  many  cases,

this  means  that  it  increases  the  mem-
brane  voltage at  the  cell  body  by  about
0.2-1 mV.

Therefore, many synaptic inputs have to
happen synchronously to trigger an
action potential.

Neuronal Signals

From: Principles of Neural Science

Kandel, Schwartz, Jessel, 1991
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Dendritic Spines: Inputs for Synapses
Excitatory  synapses  form  often
at  spines  which  are  bulges  of
dendritic membrane. 

Although much is unknown,
they probably act as local diffu-
sion  reservoir  for  Calcium  sig-
nals and change their shape
upon learning. 
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The  interplay  of  currents  along
the dendritic tree can be intricate
and allows the neuronal network to
implement various logical opera-
tions (left):

A:  Inhibitory  synapses  can  veto
more distal excitatory synapses:
output = [e3  and  not  (i3  or  i2  or
i1)]  or  [e2  and  not  (i2  or  i1)]  or
[e1 and not i1].

B:  Branches  can  overcome  the
inhibitory effects. For example [e5
and not i5] and not i7.

So the assumption that a dendritic
tree  is  a  simple  addition  is  very
simplistic.

Dendritic Logics

From: The Synaptic Organization of the Brain,

Gordon M. Shepherd 1998

Excitatory

Inhibitory
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Experimentally, one can excite large trains of
action potential (top). 

Thus,  for  long,  the  average  firing  rates
were taken as main parameter of neural net-
works. 

Sparse Firing

From: Principles of Neural Science

Kandel, Schwartz, Jessel, 1991

Fast spiking is not the normal mode of
operation for most neurons in the brain.
Typically,  neurons  fire  sparsely  where
each action potential counts (below).
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McCulloch and Pitts simplified neuronal sig-
nalling to two states:

- Neurons i=1..N are either in state Si=-1 or 
Si=+1, i.e they are silent or fire an action
potential

In  the  simplest  model  of  an  associative
memory, the neurons are connected to
themselves with a coupling strength
matrix  J ij.  It  contains  the  “strength”  or
synaptic weight of the connections between
the neurons. 

Assume that the dendrites of neuron i only
add  the  signals.  The  internal  signal  of  the
neuron  h i  is  then  the  matrix  product  of
incoming  neuronal  states  S j  according  to
hi=J ijSj (sum over common indexes). 

In the simplest form, neuron i fires if hi  is
positive: S i=sign[hi]. 

This  update  can  be  performed  with  time
lags, sequentially or in parallel and defines
a dynamic of the neuronal net.

Simple Model: Associative Memory
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Matrix J ij

Dynamics from OUT=IN

t h( ) sign h[ ]=

Si t tΔ+( ) sign h i t( )[ ]=
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The dynamics has a number of
defined fix points. By setting Jij,
activity  patterns  can  be  memorized
and dynamically retrieved. 

You want to memorize the patterns
  into  the  network.  The  recipe  to

do this is reminiscient of an old pos-
tulate in neuroscience.

Hebb postulated in 1949: “When an
axon  of  cell  A  is  near  enough  to
excite a cell B and repeatedly or per-
sistently takes part in firing it, some
growth process or metabolic change
takes place in one or both cells such
that A’s efficiency, as one of the cells
firing B, is increased.”. 

Both proportionalities are still
present in the learning rule for J ij on
the left. 

ξμ

Pattern µ for neuron i:

ξi

μ
1±=

Probability for “+1”:

1 a±

2
------

Learning the Patterns with a Hebbian

learning rule leads to: 

Simple Model: Associative Memory
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Images of the size IxI are often used to show the
memorizing  capability  of  neural  networks.  Thus,
the  image  is  the  pattern  vector  with  length  I^2
and  the  coupling  strength  matrix  J  has  a  size  of
I^2 x I^2.

For  example  we  store  8  letters  with  I=10  using
N=100 neurons and a coupling matrix of 100x100
weights.  The  retrieval  from  highly  noisy  input  is
possible, but shows some artefacts (F,G).

Retrieval is performed by starting at the noisy pat-
tern, following the neuronal update dynamics to its
fixpoint.

The  capacity  of  a  fully  connected  formal  neural
network  scales  with  N.  The  number  of  patterns
which  can  be  stored  is  about  0.14xN.  Thus  in
above network we can store about 9 letters.

An associative memory with the same number of
synapses (1015) than the brain could save
0.14*10 7.5=5x106 different patterns.

But  the  connections  in  the  brain  are  much  more
complex.
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From: Models of Neural Networks I, 

Domany  van Hemmen  Schulten  Springer 1995

Capacity q of a fully

μ 1…q= q 0.14N≈

Simple Model: Associative Memory

connected network:
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J.J.  Hopfield  showed  1982  that  formal
neural networks are analogous to spin
glasses.

A  spin  glass  is  an  amorphous  material
which fixes spins in a 3D matrix. The
spins can be oriented up or down. 

The magnetic field from each spin
influences the other spins. This
“crosstalk” between spins is described
by a coupling strength matrix J. 

Such  a  spin  glass  is  described  by  the
Hamilton  operator  H  to  the  left.  The
fixpoints  are  now  simply  the  ground
states of the system to which the
dynamics converge.

The  analogy  made  neuronal  networks
more accessible to theoretical physicists.

Hopfield-Analogy to Spin Glasses
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Neural Networks
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Synapses of real neural networks
show intrinsic noise. For example,
chemical synapses either release a
synaptic vesicle, or they don’t (“quan-
tal” noise). 

It  is  implemented  into  neuronal  net-
works with a probabilistic function
of t(h) with t being the probability to
find  the  output  neuron  in  the  state
Si=+1.

As expected, noise does not change
the  property  of  neural  networks  dra-
matically. 

As everywhere in biophysics, the inclu-
sion of noise in a model is a good test
for its robustness.

Towards realistic neurons

With Randomness:

Deterministic:

t h( ) sign h[ ]=

From: Gerstner, Ritz, van Hemmen,

Biol. Cybern. 68,363-374 (1993)

SOUT t JS IN( )=
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Until now, we have assumed instan-
taneous  propagation  of  signals  in
neural networks. This is not the case
and typical delays are on the 5-20ms
time scale.

Delays  leads  to  new  dynamics  of  the
network  and  can  trigger  oscillations
(left). 

We  will  discuss  a  compelling  model
which uses these delays in the follow-
ing.

Towards realistic neurons

From: Models of Neural Networks I, 

Domany, van Hemmen, Schulten, Springer 1995

Sparse Firing and Oscillations



Vorlesung Biophysik Braun - Neurronale Netze

Phase Locking and Pattern Recognition

One old theory of pattern gecognition is the
so  called  “grandmother  cell”  proposal.  It
assumes  that  partial  patterns  converge  to
one  cell  and  if  that  cell  fires,  the  grand-
mother is seen. However this approach has
severe problems:

- What happens if this cell dies?

- Not much experimental evidence

- “Combinatorical Explosion”: any combi-
nation  of  patterns  would  require  a  novel
grandmother cell, much more than even the
brain can have.

The detection of patterns by cell groups as
associated memory does not have that prob-
lem. Noisy signals can still be detected and
the model is robust against death of single
cells.

However there are two major problems:

- How should the pattern be read out?

- “Superposition catastropy”: a superpo-
sition of patterns is not recognized since it
acts as novel pattern.

Superposition

Catastrophy

B. Recognition by Cell Groups

A. Recognition by “grandmother cell”
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Phase Locking and Pattern Recognition

A biologically motivated and analytically soluble model of collective oscillations in the cortex.

G t W Rit R H JL Bi l C b 1993 68(4) 363 74
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Inhibition

z Delayed

z Fires a few pulses 

followed by a pause
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Explanation

z Behaviour depends of relative 
timing of inhibition and 
excitation

z Low delay:

– Quick feedback, immediate 
growth

z Medium delay:

– Excitation while  neuron is 
inhibited

z Long delay:

– Excitation from previous 
oscillation stimulates the 
following excitation
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G t W Rit R H JL Bi l C b 1993 68(4) 363 74
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How does the Hebbian learning para-
digm keep up with experiments?

Single neurons before and after a syn-
aptic  transmission  are  excited  exter-
nally  with  different  time  delays.  The
efficiency  of  the  synapse  is  recorded
before and after the learning protocol. 

This allows to infer the time resolution
and direction of learning increment ΔJ ij
for a synapse (left). 

These results would for sure have
pleased Hebb. Indeed, the precise tim-
ing of neuron modulates the learning
of a synapse with a very high time res-
olution on the ms time scale.

Towards realistic neurons: Temporal Learning

Hebbian in time 

From: L. F. Abbott and Sacha B. Nelson, 

e ij t( )

Shapes of

Nature Neuroscience Suppl., 3:1178 (2000)
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Temporal Patterns

If we start from a distribution of
axonal lengths, different synapses
transport the information of both time
delay and strength.

This  can  actually  be  used  to  extend
the  associative  memory  of  networks
onto the temporal domain: a sequence
of patterns can be stored. If triggered,
movie of patterns is generated (left).

from:

Retrieval of spatio-temporal sequence
in asynchronous neural network,
Hidetoshi  Nishimori  and  Tota  Naka-
mura,  Physica  Review  A,  41,  3346-
3354 (1990)
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Finding:  sensory  maps  are  found  in
the brain with a high large scale orga-
nization.

Problem: how does the brain map and
wire  similar  outputs  next  to  each
other although there is no master to
order the things?

Sensory Maps: Kohonen Network

Approach: Kohonen assumed a
“winner  takes  all”  approach  where
direct neighbors profit from a map-
ping and more distant ones are pun-
ished.  With  this,  a  simple  algorithm
(next  page)  generates  beautiful  sen-
sory maps.

Disadvantage: We can only guess the
real  microscopic  algorithm  behind
the approach since it appears that we
need a master to determine the win-
ner.
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Step 0: Initialization.

Synaptic weights J vl=random.

Step 1: Stimulus

Choice of Stimulus Vector v.

Step 2: Find Winner

Find Stimulation-Winner location a
with minimal weight vector - distance
from stimulus v.

Kohonen Network Algorithm

Input stimulus vector v with index l

Synaptic weight Ja l,  from V to A

Target map location a

Step 3: Adaptation

Move  the  weights  of  winner  (and  its
surrounding h) towards the stimulus v

v Ja'– v Ja–≤

Ja
new( ) Ja

old( ) εha a', v Ja
old( )–[ ]+=

and go to Step 1. This will converge
towards a mapping given by:

Input of a given by Ja l, vl

l

∑
withv a→ v Ja–  minimal.
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Kohonen Example: 2D to 2D mapping

Example. 

Input vector v is the logarithmic
amplitude of two microphones
which  record  a  sound  in  a  2D
space. 

We start with random weights J.

The  Kohonen  algorithm  results  in
a map that reflects the setting of
the sound location in 2D space. 

The Kohonen-map has memo-
rized neighborhood informa-
tion into their synaptic
weights.
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Kohonen Example: 2D to 1D mapping

Quite  impressive  is  the  Kohonen
mapping between different
dimensions - in this case between
the locations in 2D to a 1D recep-
tive Kohonen map. 

The mapping problem in this case
is similar to the traveling sales-
man-problem.
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