

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

"May the force be with you!"

Physik 1 für Chemiker und Biologen

4. Vorlesung

Heute:

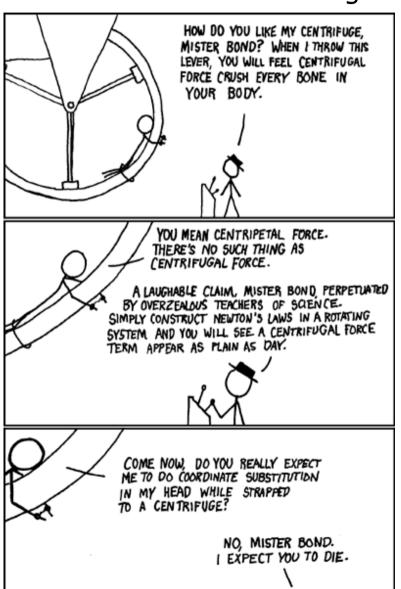
- Allgemeines zu Kräften
- Kreisbewegungen & Zentrifugalkraft
- Reibungskräfte: Festkörper & Fluide

Prof. Dr. Ralf Jungmann

Jungmann@physik.lmu.de

Prof. Dr. Jan Lipfert

Jan.Lipfert@lmu.de

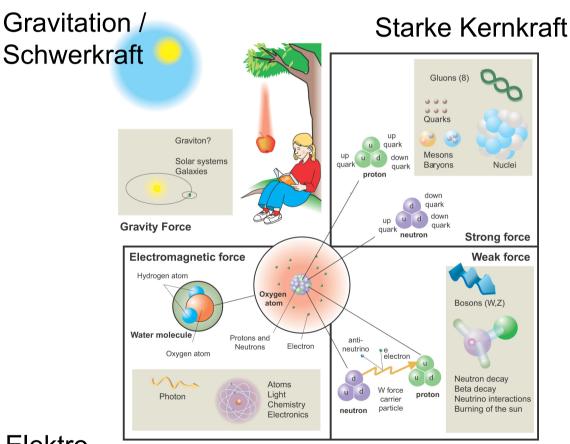


LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

"May the force be with you!"

Physik 1 für Chemiker und Biologen

4. Vorlesung


Heute:

- Allgemeines zu Kräften
- Kreisbewegungen & Zentrifugalkraft
- Reibungskräfte: Festkörper & Fluide

Fundamentale Kräfte

SI-Einheit der Kraft folgt aus Definition: $\ \vec{F}=m\cdot\vec{a}, [\vec{F}]=1\frac{kg\cdot m}{s^2}=1N$

Die vier Grundkräfte der Physik

Elektro-

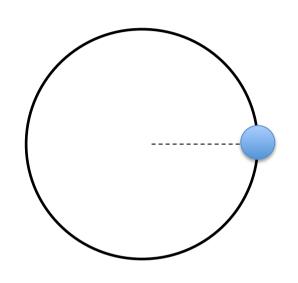
http://www.nobelprize.org/nobel_prizes/physics/laureates/2004/popular.html

magnetische Kräfte

Schwache Kernkraft

Phänomenologische Kräfte & "Scheinkräfte"

Es ist oftmals schwierig oder unmöglich, Vorgänge direkt mit den vier Grundkräften zu beschreiben. Es ist daher nützlich, "effektive" Kräfte einzuführen, die Interaktionen beschreiben.


Phänomenologische Kräfte

- Gewichtskraft
- Federkraft
- Reibungskraft
- Auftriebskraft
- Oberflächenspannung
- •

Scheinkräfte / Trägheitskräfte

- Fliehkraft / Zentrifugalkraft
- Corioliskraft
- Trägheitskraft
- ..

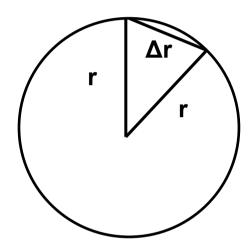
Gleichförmige Kreisbewegung

Definitionen:

Umlaufdauer T

Frequenz
$$f = \frac{1}{T}$$

Winkelgeschwindigkeit


$$\omega = \frac{d\phi}{dt}$$

$$\omega = \frac{2\pi}{T}$$

 $|ec{v}|$ ist konstant, aber $ec{v}$ ändert sich!

Nach Newton ist für eine Geschwindigkeitsänderung eine Beschleunigung nötig, die durch eine Kraft verursacht wird!

Die Zentripetalkraft

http://de.wulffplag.wikia.com/wiki/Datei:Kettenkarussell.jpg

Wie groß sind Zentripetalkräfte? Ein Beispiel aus dem Chemielabor

https://de.wikipedia.org/wiki/Zentrifuge

Tischzentrifuge

4. Spin buffer and RNA sample solutions for 10 min at 13,000 rpm immediately before the SAXS measurement.

Lipfert, Herschlag, Doniach Methods in Molecular Biology (2009)

Zentripetalkraft vs. Schwerkraft "Looping the Loop"

Looping auf der Wies'n

"Loop the Loop" (Coney Island)

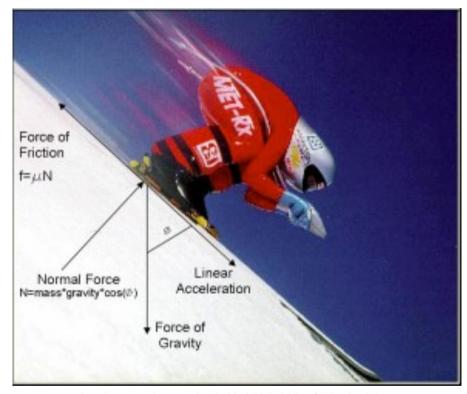
8

Scheinkräfte

Scheinkräfte oder Trägheitskräfte treten in beschleunigten Bezugssystemen auf, d.h. wenn sich der Beobachter <u>nicht</u> in einem Inertialsystem befindet.

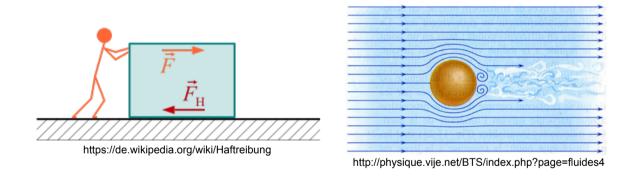
BEISPIEL: Anfahrendes Auto "Wenn ich auf das Gas trete, drückt <u>es mich in den Sitz"</u>

https://de.wikipedia.org/wiki/Dragster

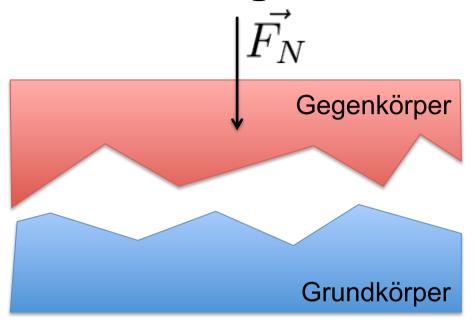

BEISPIEL: Aufzugfahrt "Beim Hochfahren, werde ich nach unten in den Fahrstuhl gedrückt"

https://upload.wikimedia.org/wikipedia/commons/ 5/54/240_Sparks_Elevators.jpg

Hangabtriebskraft & Normalkraft


Beschleunigung eines Skifahrers

http://sportsnscience.utah.edu/2012/09/04/skiing-friction-basic/

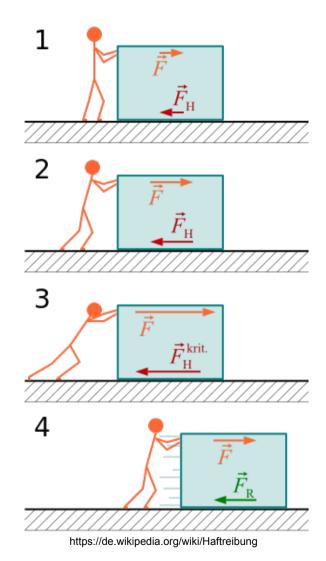

Reibung ist eine "phänomenologische" Kraft

- Gesetze sind (mehr oder weniger gute) N\u00e4herungen
- Grundsätzlich drei unterschiedliche Typen von Reibung:
 - Reibung zwischen Festkörpern
 - laminare Strömung (Reibung in Flüssigkeiten)
 - turbulente Strömung (Reibung in Gasen oder Flüssigkeiten)

- Auf atomarer Ebene gibt es keine Reibung
- Reibung verhindert oft, dass wir die "wahren" physikalischen Gesetze beobachten

Reibung zwischen Festkörpern

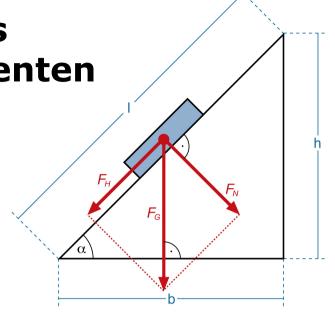
http://esporte.hsw.uol.com.br/escalada.htm



https://en.wikipedia.org/wiki/Curling

http://esporte.hsw.uol.com.br/escalada.htm

Reibung zwischen Festkörpern: Haftreibung und Gleitreibung

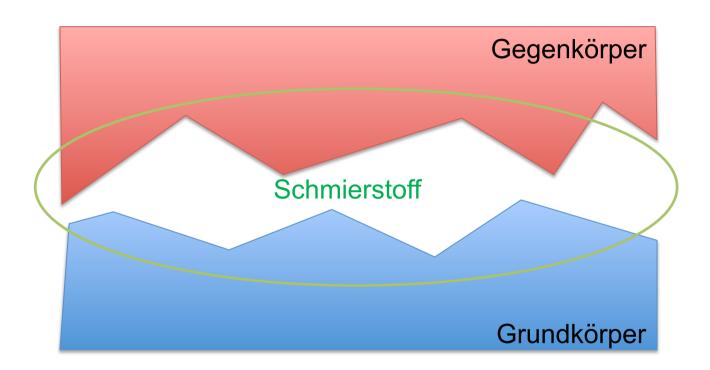


Haftreibungskraft $F_{R,Haft}$ Gleitreibungskraft $F_{R,Gleit}$

Experiment: Haft- und Gleitreibung

Bestimmung des Haftreibungskoeffizienten

Betrachte Neigung, bei der der Block gerade noch nicht rutscht:


https://de.wikipedia.org/wiki/Hangabtriebskraft

Experiment: Reibung auf schiefer Ebene

Film: Portland drivers in the snow

(https://www.youtube.com/watch?v=aAidrS144r0)

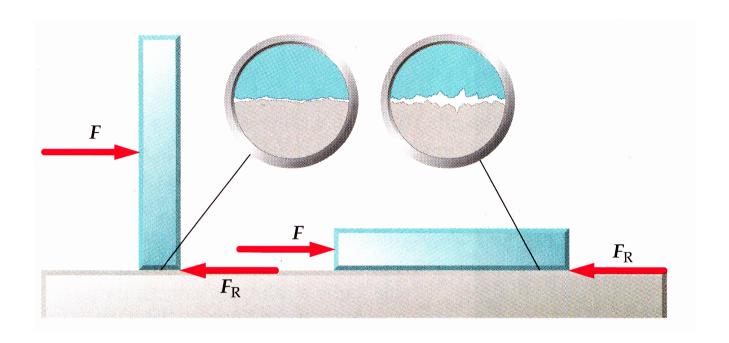
Reduzierung von Reibung: Schmieren



Reibung zwischen Festkörpern: Geschwindigkeit

Mit zunehmender Geschwindigkeit:

- A) Nimmt die Reibung zu.
- B) Nimmt die Reibung ab.
- C) Bleibt die Reibung gleich.



*F*_{Reibung} unabhängig von Geschwindigkeit *v*!

Experiment:

Geschwindigkeits-unabhängige Reibung und Schmierung (mit Isopropanol)

Reibung zwischen Festkörpern: Auflagefläche

F_R ist unabhängig von der Auflagefläche A!

Experiment: Reibung Holzklötze auf Papier

Haften, Gleiten, Rollen

- Reibung zwischen Festkörpern ist genähert unabhängig von v
- Die Reibung ist n\u00e4herungsweise unabh\u00e4ngig von der Fl\u00e4che A
- Entscheidend sind die Materialien!
- Reibungskoeffizienten werden experimentell bestimmt

Haftreibung

Gleitreibung

Rollreibung

http://esporte.hsw.uol.com.br/escalada.htm

https://en.wikipedia.org/wiki/Curling

https://de.wikipedia.org/wiki/Intercity-Express

23.11.20 Prof. Dr. Jan Lipfert 18

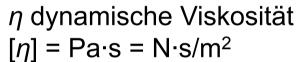
Warum fährt Sebastian Vettel so breite Reifen... und Jan Ulrich so dünne?

https://de.wikipedia.org/wiki/Sebastian Vettel

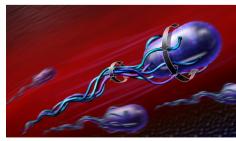
https://de.wikipedia.org/wiki/Jan_Ullrich

Stokes-Reibung ("Flüssigkeitsreibung")

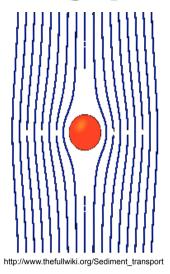
Gesetz von Stokes gilt für sphärische Körper in Fluid:


- Kleine Körper
- Kleine Geschwindigkeiten
- Viskoses Fluid

$$F_R = -6 \cdot \pi \cdot \eta \cdot R \cdot v$$



https://de.wikipedia.org/wiki/ George_Gabriel_Stokes


Sir George Gabriel Stokes (1819-1903)

- Wasser bei 20°C:
 η = 0,001 N·s/m²
- Motorenöl: $\eta = 0.25 \text{ N} \cdot \text{s/m}^2$

20

Newton-Reibung für turbulente Strömung ("Gasreibung")

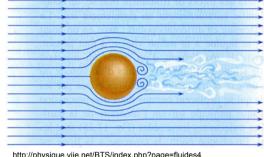
Turbulente Reibung = Newton Reibung

- Große Körper
- Große Geschwindigkeiten
- Fluid/Gas mit geringer Dichte

$$|F_W| = \frac{1}{2} \cdot \rho \cdot A \cdot C_W \cdot v^2$$

- Dichte des strömenden Fluids ρ
- Referenzfläche A
- Strömungsgeschwindigkeit v und
- Strömungswiderstandskoeffizienten C_w .

Typische C_{W} Werte:

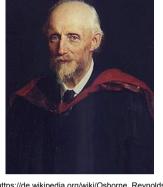

- Ford Model T: 0,9

- VW Käfer: 0,48

- "Moderne" Autos: 0,24-0,4

- "Öko"- Autos: ~0,1-0,2

- Pinguin: 0,03



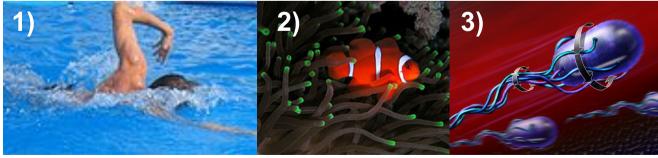
https://upload.wikimedia.org/wikipedia/commons/2/2d Aeroakustik-Windkanal-Messhalle.JPG

Wann verwenden ich welche Reibung? Die Reynoldszahl

$$Re = \frac{\rho \cdot v \cdot d}{\eta} = \frac{v \cdot d}{\nu}$$

- Dichte des strömenden Fluids ρ [kg/m³]
- Strömungsgeschwindigkeit *v* [m/s]
- Charakteristische Länge des Objektes *d* [m]
- Dynamische Viskosität η [Pa·s] = [N·s/m²]
- Kinematische Viskosität *v* [m²/s]

https://de.wikipedia.org/wiki/Osborne Reynolds


Osborne Reynolds (1842-1912)

Experiment: laminare & turbulente Strömung

Typische Reynoldszahlen in Wasser

Wir betrachten drei Schwimmer in Wasser:

- 1) Mensch; 2) kleiner Fisch; 3) Bakterium In welchem dieser Fälle gilt die Stokes Reibung in guter Näherung? Abstimmen unter pingo.upb.de!
- A) Nur 1
- B) Nur 2
- C) Nur 3
- D) Nur 1 und 2
- E) 1, 2 und 3

https://de.wikipedia.org/wiki/Rettungsschwimmen

https://de.wikipedia.org/wiki/ Anemonenfische

Nicolle Rager Fuller, National Science Foundation

Typische Reynoldszahlen in Wasser

$$Re = \frac{\rho \cdot v \cdot d}{\eta} = \frac{v \cdot d}{\nu}$$

Wasser bei 20°C:
$$\rho \sim 1000 \text{ kg/m}^3$$

$$\eta \sim 10^{-3} \text{ Pa·s} = 10^{-3} \text{ kg/(m s)}$$

$$u = \frac{\eta}{\rho} \sim 10^{-6} \, \mathrm{m}^2/\mathrm{s}$$

$$d_{i}$$
 ~ 1 cm

$$d$$
 ~1 m d ~1 cm d ~1 μ m

$$v$$
 ~ 1 m/s


$$v \sim 1 \text{ cm/s}$$

$$v$$
 ~ 1 m/s v ~ 1 cm/s v ~ 10 μ m/s

$$Re \sim 10^6$$

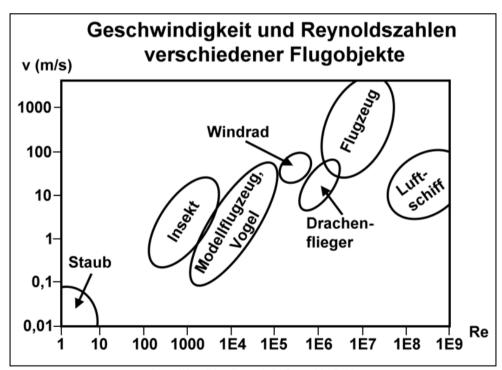
$$Re$$
 ~ 10 $^{\scriptscriptstyle 2}$

$$Re$$
 ~ 10 $^{\scriptscriptstyle 2}$ Re ~ 10 $^{\scriptscriptstyle -5}$

https://de.wikipedia.org/wiki/Rettungsschwimmen

https://de.wikipedia.org/wiki/ Anemonenfische

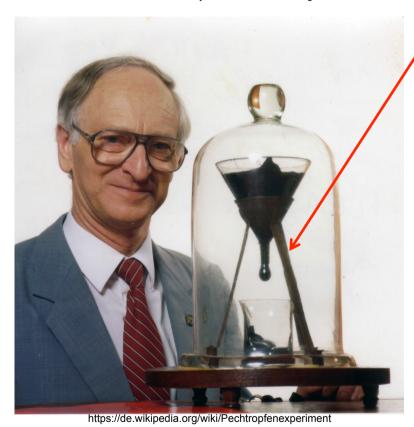
Nicolle Rager Fuller, National Science Foundation


Typische Reynoldszahlen in Luft

$$Re = \frac{\rho \cdot v \cdot d}{\eta} = \frac{v \cdot d}{\nu}$$

Luft bei 25°C, 1 Bar: $\rho \sim 1 \text{ kg/m}^3$

 η ~ 10⁻⁵ Pa·s


$$u=rac{\eta}{}$$
 ~ 10⁻⁵ m²/s

https://de.wikipedia.org/wiki/Reynolds-Zahl

Das "langweiliste Experiment der Welt"!?

Ein Beispiel für eine Viskositätsmessung: das "pitch drop" Experiment (University of Queensland, Australien)

8 Tropfen seit 1930!

 $\eta \sim 2.10^8 \text{ Pa·s}$

(~10¹¹ mal größer als für Wasser)

John Mainstone (der damalige Kurator) und sein Experiment, 1990

Tempolimit auf Autobahnen?

$$|F_W| = \frac{1}{2} \cdot \rho \cdot A \cdot C_W \cdot v^2$$

- Dichte des strömenden Fluids ho
- Referenzfläche A
- Strömungsgeschwindigkeit v und
- Strömungswiderstandskoeffizienten C_w .

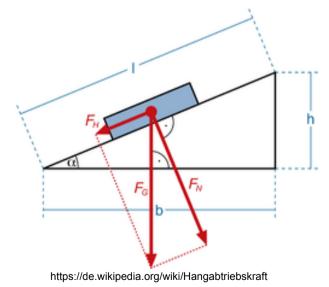
https://de.wikipedia.org/wiki/Autobahn

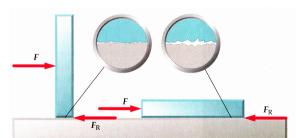
http://www.freefoto.com/preview/1216-07-33/Speed-Limit-70-Sign--Route-95--Nevada--USA

Zusammenfassung: Festkörperreibung

Schiefe Ebene:

- Hangabtriebskraft
- Normalkraft


Festkörperreibung:


- Haftreibung $F_H = mg \sin \alpha \quad |F_{R, \text{Haft}}| = \mu_{R, \text{Haft}}|F_N|$
 - Gleitreibung

$$F_N = mg\cos\alpha \quad |F_{R,Gleit}| = \mu_{R,Gleit}|F_N|$$

28

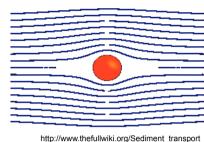
Die Festkörperreibung ist unabhängig von v und A!

Zusammenfassung: Fluidreibung

Stokes-Reibung ("Flüssigkeitsreibung") Gilt für:

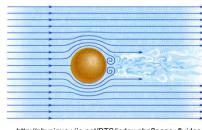
- Kleine Körper
- Kleine Geschwindigkeiten
- Viskoses Fluid

$$\vec{F}_R = -6 \cdot \pi \cdot \eta \cdot R \cdot \vec{v}$$


Newton-Reibung ("Gasreibung")

Gilt für:

- Große Körper
- Große Geschwindigkeiten
- Fluid/Gas mit geringer Dichte


$$\vec{F}_R = -\frac{1}{2} \cdot \rho \cdot A \cdot C_W \cdot v^2$$

- ρ Dichte des Fluids
- A Referenzfläche
- *C_w* Strömungswiderstandskoeffizient
- *v* Geschwindigkeit

http://www.triciuliwiki.org/oculinent_transpo

- n dynamische Viskosität
- R Kugelradius bzw. effektiver Radius
- v Geschwindigkeit

