

Life from a Planetary Perspective

Sebastian Jung

Motivation

• Life on earth is diverse

- Science: It has to start somewhere
- Which **conditions** are needed?
- Which **chemistry** is needed?
- How does it fit into history of earth?

Agenda

- Introduction
- One (possible) Pathway to Life
- Outlook
- Summary

Introduction

Steps to Life

Barrier to bear life Birth of ecosystem size (6) Ecosystem Barrier membrane (P+C) DNA 10⁹ N+p(P+K) copy+function **DNA world** (5) DNA Barrier 🔶 huge gap metabolism fuel RNA(function) P+K **RNA** world 10⁵ 10 base pair nucleic acid sugar (4) RNA Barrier P1~ P10 C1~ C10 N1~ N10 Large molecular Protein 00 0 10³⁻⁴ organic compounds Nucleotide complex (3) **Catalyzer Barrier** 10^{2} Amino acid 0 Amino acid Barrier Simple organic 10¹ compounds **FT Reacion Barrier** Inorganic compounds Inorganic Stage

S. Maruyama et al, Geoscience Frontiers (2013)

Different theories

- Life from ground up
- Focus of the talk: Emergence of Simple Monomers

The History of Earth

[1] Betts et al, Nature Ecology & Evolution (2018)

Some Famous Examples

- <u>Miller-Urey Experiment^[1]</u>
 - High yield of amino acids
 - Wide variety of important biological molecules^[2]

https://en.wikipedia.org/wiki/Miller%E2%80%93Urey_experiment

- *BUT:*
 - Conditions unrealistic

 \rightarrow Real conditions: Low yield, less diverse^[3]

Many non-biological by-products^[4]

[1] S. L. Miller, Science, 1953

[2] https://en.wikipedia.org/wiki/Miller%E2%80%93Urey_experiment

[3] D. D. Sasselov et al. Science Advances, 2020

[4] B. H. Patel et al. Nature chemistry, 2015

23/11/20

Some Famous Examples

- Deep Sea Hydrothermal Vents
 - CO₂ as Carbon source^[1]
 - High energy flux
 - BUT:
 - Not as diverse^[1]
 - Low yield^[1]

https://en.wikipedia.org/wiki/Hydrothermal_vent

• High T \rightarrow molecular instability

[1] D. D. Sasselov et al. Science Advances, 2020

One (Possible) Pathway to Life

Approach

- Iterative process:
 - Biochemistry has to be supported by geologic and geochemical observations
 - Environmental conditions had to be fitting for life to emerge

Biochemistry <=> Geology

• Different to previous examples!

D. D. Sasselov et al. Science Advances, 2020

Assumptions

- Modern life retained some direct vestiges of prebiotic chemistry/planetary conditions
- No panspermia
- Basic chemicals needed
 - C, H, N, O, P, S

https://neelmodi.com/panspermia/

- On modern earth: No observation of life originating on its own
 - \rightarrow Different chemical feedstocks/conditions required

D. D. Sasselov et al. Science Advances, 2020

Oxidation states

- Focusing on Nitrogen and Carbon
- Hydrogen cyanide (HCN) ideal feedstock

D. D. Sasselov et al. Science Advances, 2020

HCN Pathways^[1]

- HCN as starting point
- Ribonucleotides
- Amino acids
- Lipid precursor
- Almost no side products
- High yield
- How do we get there?

[1] B. H. Patel et al. Nature chemistry, 2015

Conditions

- Hadean (~4.6Ga-4.0Ga ago)^[1]
- Secondary Atmosphere:

- H, C, N, O → <u>High energy</u> → CN, CO, NO ...^[2]
- <u>High energy</u> due to^[2]
 - Meteors, Lightning, Volcanos, Solar flares
- Cooling: $CN \rightarrow HCN^{[2]}$

[1] https://en.wikipedia.org/wiki/Hadean

[2] D. D. Sasselov et al. Science Advances, 2020

[3] K. Zahnle et al. Cold Spring Harb Perspect Biol. 2010

Concentration of HCN

- HCN in atmosphere useless
 - → Sedimentation of Ferrocyanide

Desiccation - Dry periods

- Ferrocyanide salts save under surface deposits
- Save in repeated drying cycles

Thermal pulses

- Igneous intrusions, volcanic activity, impacts
 - \rightarrow up to 700°C \rightarrow Metamorphic reaction

Neutral pH Water

- Exposure to neutral pH Water
- SO₂ from volcanic eruption, Shallow water

Jung, WiSe2020

18/30

D

... Almost?

 Phosphate required for nucleotides and lipid NH_2 precursors

https://en.wikipedia.org/wiki/Nucleotide

https://www.creative-proteomics.com/services/phospholipids-analysis-service.htm \rightarrow Little is known about P cycle on Earth or Mars

• Nitrite (NO₂⁻) from NO in atmosphere could be needed for higher order assembly

 \rightarrow Would react with bisulfite (HSO₃⁻)

D. D. Sasselov et al. Science Advances, 2020

Is it plausible?

- Evidence of prebiotic chemistry on earth lost due to plate tectonics \rightarrow Look at other planets
- Mars: No plate tectonics → Good comparison
 - Has deposits of sedimentary rocks, including rocks formed in aqueous solution
 - Curiosity found C, H, N, O, P, S in Gale Crater

https://mars.nasa.gov/news/8796/nasas-curiosity-takesselfie-with-mary-anning-on-the-red-planet/?site=msl D. D. Sasselov et al. Science Advances, 2020

https://www.nasa.gov/mission_pages/msl/multimedia/gallery/pia14294-anno.html

23/11/20

Jung, WiSe2020

Is it plausible?

- <u>Atmosphere:</u>
 - Highly reducing atmosphere (CH_4 , NH_3 , H_3) photochemically unstable (H escapes to space)
 - Earth-size and super-Earth exoplanets expected to have weakly reducing N₂-CO₂ atmosphere
 - → Prebiotic chemistry possible

D. D. Sasselov et al. Science Advances, 2020

Is it plausible?

- <u>Hydrosphere</u>:
 - Expected to be common in habitable zone
 - Plate tectonics contains liquid surface reservoirs
- UV irradiation:
 - CO_2 and H_2O prevent UV < 200nm
 - Probably enough mid-range (200nm-300nm)
 UV is reached in most Earth-like planets

We can learn from other planets!

D. D. Sasselov et al. Science Advances, 2020

Outlook

Exoplanets

• Early Earth atmospheres unknown

 \rightarrow In the future, spectroscopic exploration of exoplanet can give more insides

e.g. James Webb Space Telescope

https://www.jwst.nasa.gov/index.html

Mars2020

Quick Facts

Mission Name: Mars 2020

Rover Name: Perseverance

Main Job: The Perseverance rover will seek signs of ancient life and collect rock and soil samples for possible return to Earth.

Launch: July 30, 2020, Cape Canaveral Air Force Station, Florida

Landing: Feb. 18, 2021

Landing Site: Jezero Crater, Mars

Mission Duration: At least one Mars year (about 687 Earth days)

Tech Demo: The <u>Mars Helicopter</u> is a technology demonstration, hitching a ride on the Perseverance rover.

Fact Sheet

Launch Press Kit

https://mars.nasa.gov/mars2020/

Future steps

- After solving creation of monomers:
 - Polymerization
 - Vesicle formation
 - Encapsulation
 - Replication

Summary

Summary

- New iterative approach:
 - Laboratory experiments <=> Planetary observation
- HNC Pathway leads to many necessary biological building blocks
- Is just <u>one</u> possible solution
- Analysis of other planets could give insides into earths history
- Many open questions remain

What do YOU think?

Image sources

- Title image: https://en.wikipedia.org/wiki/Creationism
- https://www.livescience.com/51641-bacteria.html
- https://www.pei.de/DE/newsroom/dossier/coronavirus/coronavirus-node.html
- http://www.bbc.com/earth/story/20150611-chimps-smile-like-us
- https://allthatsinteresting.com/interesting-plants
- https://www.gazetteandherald.co.uk/news/18796000.pictures-18-stunning-images-fabulous-funghi/
- https://en.wikipedia.org/wiki/Vitruvian_Man
- https://en.wikipedia.org/wiki/Hydrothermal_vent

