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Abstract
These notes present a pedagogical introduction to magnetic monopoles and exact
electromagnetic duality in supersymmetric gauge theories. They are based on lectures
given at the 1995 Trieste Summer School in High Energy Physics and Cosmology and at
the 1995 Busstepp Summer School at Cosener’s House.
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0. Introduction
0.1. Introduction and Outline

The subject of magnetic monopoles has a remarkable vitality, resurfacing every few
years with new focus. The current interest in magnetic monopoles centers around the
idea of electromagnetic duality. Exact electromagnetic duality, first proposed in modern
form by Montonen and Olive [1], has finally been put to non-trivial tests [2,3,4,5,6,7] in
finite N = 4 Super Yang-Mills theory [8] and special finite N = 2 theories [9]. Although
duality is far from being understood, the evidence is now sufficiently persuasive that the
focus has turned from testing to duality to understanding its consequences and structure.
Perhaps more significantly, it has also been understood that duality plays a central role in
understanding strongly coupled gauge theories with non-trivial dynamics, particularly in
their supersymmetric form [10,5]. Here the duality is not exact but nonetheless the idea
of a dual formulation of a strongly coupled theory in terms of weakly coupled magnetic
monopoles is central and the dynamics of these theories is closely tied to the properties of
magnetic monopoles, many of which can be studied semi-classically.

These lectures are intended to provide an introduction to the properties of magnetic
monopoles which are most relevant to the study of duality. They have for the most part
been kept at a level which should be appropriate for graduate students with a good grasp
of quantum field theory and hopefully at least a passing acquaintance with supersymme-
try and some of the tools of general relativity. There is also a recent review of exact
electromagnetic duality by David Olive [11] which I highly recommend. There are many
topics which are not covered, including, monopoles in gauge groups other than SU(2),
homotopy theory as applied to magnetic monopoles, the Callan-Rubakov effect, astro-
physical implications of magnetic monopoles, experimental and theoretical bounds on the
cosmic monopole abundance, and in general anything having to do with “real ” magnetic
monopoles as they might be found in nature. These omissions are more than made up for
by the existence of excellent reviews which cover this material [12,13,14,15] and which the
student should consult to complement the present lectures. I have also not covered most
of the sophisticated mathematics related to the structure of the BPS monopole moduli
space. A good reference for this material is [16].

What I have tried to do is to take a fairly direct route starting from the basics of
magnetic monopoles and ending at the new evidence for S-duality found by A. Sen in

February, 1994 [2]. These lectures are organized as follows. The first lecture begins with
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a brief discussion of some early examples of duality in physical systems. The basic ideas
of electromagnetic duality and the Dirac monopole are then introduced followed by a
discussion of the 't Hooft Polyakov monopole. Lecture two begins a discussion of magnetic
monopoles in the BPS limit of vanishing scalar potential. The Bogomol'nyi bound is
derived and the BPS single charge monopole solution is presented. Spontaneous breaking
of dilation symmetry and the Higgs field as “dilaton” are discussed. Collective coordinates
are introduced through a concrete construction of the moduli space of the charge one
BPS solution and then a more formal discussion of the moduli space of BPS monopoles
is given. The third lecture discusses the dependence of monopole physics on the 6 angle
and introduces Montonen-Olive duality and its generalization to SL(2,7) known as S-
duality. The coupling of fermions to magnetic monopoles is explored in the fourth lecture.
Fermion zero modes are constructed and the effects of their quantization on the monopole
spectrum is discussed. The fifth lecture explores the consequences of both N = 2 and
N = 4 supersymmetry for monopole physics. The Bogomolnyi bound is revisited and
related to a central extension of the supersymmetry algebra and the relation between BPS
saturated states and short supermultiplets is briefly discussed. Finally, the basic features
of supersymmetric quantum mechanics on the monopole moduli space are presented. The
final lecture is devoted to the evidence for S-duality which comes from an analysis of the
two-monopole moduli space following the work of Sen. I have included in this lecture a
brief explanation of some elegant work of Manton’s on the asymptotics of the two monopole
moduli space. The final section contains some very brief remarks on open problems and
recent developments. I have also taken the liberty of expanding some of the lectures beyond
the material actually presented in order to provide what I hope will be a more useful review
of duality.

There have of course been spectacular new developments in understanding duality in
supersymmetric gauge theories with NV = 1, 2,4 supersymmetry and also in understanding
duality in string theory [17,18] which are not covered at all in these lectures. These
developments show that electromagnetic duality is a profound new tool for probing the
behavior of strong coupling dynamics. The material covered here is rather mundane in
comparison but hopefully will provide students with some of the background necessary to

appreciate and contribute to these new ideas.
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0.2. Acknowledgements

I would like to thank the organizers of the Trieste Summer School and the Busstepp
School for the invitations to lecture and the students at these schools for their questions
and interest. It is a pleasure to acknowledge colleagues and collaborators who have shared
their insights into the topics discussed here. In particular I would like to thank J. Blum,
C. Callan, A. Dabholkar, J. Gauntlett, G. Gibbons, J. Liu, G. Polhemus, A. Sen, A.
Strominger, and E. Witten.

0.3. Conventions

We will use standard “field theory” relativity conventions with Minkowski space sig-

0123

nature (+ — ——) and € = +1. Greek indices run over the range 0, 1,2, 3 while Roman

indices run over the spatial indices 1,2, 3.

Generators T of a compact Lie algebra are taken to be anti-Hermitian. Gauge fields

a
o

vector fields, A, = A}T“, or as Lie-algebra valued one-forms A = A, dz".

will be written as vector fields with an explicit gauge index A%, as Lie-algebra valued

The speed of light ¢ will always be set to 1. For the most part I will set 4 = 1 and
denote the gauge coupling by e. We will use Heaviside-Lorentz conventions for electromag-
netism with factors of 47 appearing in Coulomb’s law rather than in Maxwell’s equations.

The electric field of a point charge q is
qr

E = .
A2

Similarly the magnetic field far outside a magnetic monopole of magnetic charge g is given
by R
B=2_,
47r?

It is common in some monopole literature [14] to use definitions of the electric charge e
and magnetic charge g which differ by a factor of 47 in order to preserve the quantization
condition in the form originally given by Dirac, eg = n/2. Since the emphasis of these
notes is on duality between electric and magnetic states, such a convention is inappropriate.
Another common convention in the monopole literature [19] leaves / as an independent
constant but sets the gauge coupling e = 1.

Other conventions involving supersymmetry and gamma matrices will be discussed in

the text as they arise.



0.4. Ezercises

Each lecture is followed by a set of exercises. Most of these are short and straight-
forward and are meant to reinforce the material covered rather than to seriously challenge
the student. A few of the problems involve somewhat more advanced topics. As usual,

serious students are strongly encouraged to work most of the problems.

1. Lecture 1
1.1. Duality

Saying that a physical system exhibits “duality” implies that there are two comple-
mentary perspectives, formulations, or constructions of the theory. To begin I will briefly
describe duality in three systems which have had an impact on the search for duality in
four-dimensional gauge theories.

In quantum mechanics we say that there is particle-wave duality meaning that quan-
tum mechanically particles can exhibit wave like properties and waves (e.g. light) can
exhibit particle like properties. We can think of this roughly speaking as the relation be-
tween the position space basis of states (z|i)) and the momentum space basis (p[¢) given
by Fourier transform.

The harmonic oscillator provides a simple example of a system exhibiting “self-duality”
in the sense that it looks the same in coordinate space and in momentum space. So consider

the harmonic oscillator Hamiltonian

2

H= Zp—m + Tmw?2? (1.1)
with [z,p] = i. We can define a duality transformation which exchanges position and
momenta by !

D:x— p/mw, P — —MMWT (1.2)

Note that this is a canonical transformation and thus preserves the commutation relations.
Squaring D we find D? = P with P the parity operator P : x — —z. The fact that D is
a symmetry of the harmonic oscillator is reflected in the fact that the ground state wave

function and its Fourier transform are transformed into one another by the action of D, the

L This is clearly a discrete subgroup of a continuous symmetry which rotates p and x into each
other.



Fourier transform of a Gaussian wave function is again Gaussian. Of course this is a rather
trivial system, analogous to free field theory, and we will see in fact that the duality here is
closely related to the electromagnetic duality of free Maxwell theory. We will later argue
for an exact extension of electromagnetic duality in N = 4 super Yang-Mills theory which
in some poetic sense should thus be regarded as the harmonic oscillator of four-dimensional
gauge theory.

Another system, also exactly soluble, which exhibits a somewhat different kind of
duality is the Ising model. This is defined by taking a set of spins o; taking the values
+1 and living on a square two-dimensional lattice with nearest neighbor ferromagnetic

interactions of strength J. The partition function at temperature T is

Z(K)=> exp(K Y 0i0;) (1.3)
o (i)

where the sum on ¢, 7 runs over all nearest neighbors, the sum on o over all spin config-
urations, and K = J/kgT. This theory was solved explicitly by Onsager and exhibits a
first-order phase transition to a ferromagnetic state at a critical temperature 7,.. However
even before Onsager’s solution the critical temperature was computed by Kramers and
Wannier using duality. They showed that the partition function (1.3) could be represented
in two different ways as a sum over plaquettes of a lattice. In the first form the sum is
over plaquettes of the original lattice with coupling K. In the second form one finds a sum
over plaquettes of the dual lattice (the square lattice whose vertices are the centers of the
faces of the original lattice ) with coupling K* where sinh 2K* = 1/(sinh 2K). Since the
dual lattice is also a square lattice, the two formulations are equivalent, but with different
values of K. Note also that high temperature (K << 1) or weak coupling is mapped to
low temperature (K* >> 1) or strong coupling on the dual lattice. Now if the system is
to have a single phase transition then it must occur at the self-dual point with K = K*
or sinh(2J/kpT,) = 1.

This model provides a more striking example of the use of duality. Duality provides
non-trivial information about the critical behavior and relates a strongly coupled theory
to a weakly coupled theory. Since many of the thorniest problems in theoretical physics
involve strong coupling (e.g. quark confinement, high 7. superconductivity ) it is very
tempting to look for dualities which would allow us to use a dual weakly coupled formula-

tion to do computations in such strongly coupled theories.

6



Another system which adds to this temptation occurs in two-dimensional relativistic

field theory. The sine-Gordon model is defined by the action
o
Ssq = /de (%augba% + 2 (cos B — 1)) : (1.4)

This theory has meson excitations of mass M,, = y/a and solitons which interpolate
between different minima of the potential with mass M, = 8,/a/3?. By expanding the
potential to quartic order we see that 3% acts as the coupling constant for this theory.
Thus the soliton mass is large (compared to the meson mass) at weak coupling.
Remarkably, this theory is known to be completely equivalent to an apparently quite
different theory of interacting fermions knows as the Thirring model. The action of the

Thirring model is
S = [ P (B,0m0 + i — Jir" i) (15)

At first sight these two theories appear completely different, but through the miracle of
bosonization they are in fact completely equivalent [20,21]. The map between the two
theories relates the couplings through

3 1

ir 14+g/m (16)

and maps the soliton of the SG theory to the fundamental fermion of the Thirring model
and the meson states of the SG theory to fermion anti-fermion bound states. As in the
Ising model, we see from (1.6) that strong coupling in one theory (i.e. large g) is mapped to
weak coupling (small 5 ) in the other theory. Thus duality provides a means of performing
strong coupling calculations in one theory by mapping them to weak coupling calculations
in a dual theory.

From these example we can extract certain general features of duality symmetries,
although not all may be present in all examples. First, duality relates weak and strong
coupling. Second, it interchanges fundamental quanta with solitons and thus exchanges
Noether charges with topological charges. Finally it often involves a geometric duality, for
example relating lattices to their duals. In four dimensional supersymmetric gauge theories
we will find obvious generalizations of the first two features. The geometrical aspects of
duality are also present, but only become clear when one considers general gauge groups.

The search for duality in four-dimensional gauge theories seems to have been moti-

vated by the existence of dualities in these simpler systems, by electromagnetic duality and
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the results of Dirac, 't Hooft and Polyakov regarding the possible existence of magnetic
monopoles, and by the work of Mandelstam, 't Hooft and others suggesting that confine-
ment in QCD might arise as a dual form of superconductivity involving condensation of
some sort of magnetically charged objects.

In spite of these hints, it has only been in the last two years that the idea of duality in
non-trivial four-dimensional theories has been taken seriously by most particle physicists.
These lectures will lead up to one non-trivial test of duality, but the skeptic could certainly
remain unconvinced by the evidence discussed here. Although the conceptual underpin-
nings of duality remain quite mysterious, recent developments in gauge theory and string

theory leave little room to doubt that duality exists and has significant applications.

1.2. Electromagnetic Duality

Maxwell’s equations read

—

V.-E=p,. V-B=0
. . 9F - . . 9B (1.7)
B-Z_J B+ .
VxB= Vx bt =0

When p. = J, = 0 these equations are invariant under the duality transformation

D: E—B, B-— —E. (1.8)
Note that D? takes (E , E) — (—E , —E) which is a transformation by charge conjugation,
C' 2. Thus the first thing we learn is that theories with exact duality must also be invariant
under charge conjugation. The duality transformation (1.8) can be generalized to duality
rotations parameterized by an arbitrary angle 6,
E — cosOF + sin Hﬁ,
- . - (1.9)
B — —sinfF + cos6B.
We will see later that this continuous duality transformation is broken to a discrete sub-
group by instanton effects when duality is embedded in non-abelian gauge theories. If
we write the Maxwell equations in covariant form in terms of the field strength F*” with

F% = —_F% and F"7 = —¢"% BF then we have

BuFM =3V, 9, x FM =0 (1.10)

2 Note the analogy with the duality transformation (1.2) for the harmonic oscillator. This

analogy can be made precise by decomposing the electromagnetic field in terms of normal modes.
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where x """ = %e“”’\pFAp and the duality transformation (1.8) takes the form F),, — *F),,.
Note that in Minkowski space #** = —1 in agreement with D? = —1.

The duality symmetry of the free Maxwell equations is broken by the presence of
electric source terms. For this reason it is of no practical interest in everyday applications
of electromagnetism. However the possibility that such a symmetry might nonetheless
exist in some more subtle form has long intrigued physicists.

If we are to have such a symmetry it is clear that we will have to make the equations
(1.7) symmetric by including magnetic source terms so that 0, * F*” = k¥ with k¥ the
magnetic four-current. Of course in standard electromagnetism we actually take advantage
of the lack of such source terms to introduce a vector potential. That is using J,, x F*¥ =0
we write FH = 9FAY — 9 A" with A* = (&, A) the vector potential. The association of
a vector potential to a given field strength is not unique. The ambiguity is that of gauge

transformations

Ay — Ay = 9ux (1.11)

which leave the field strength invariant.
Now recall that in coupling electromagnetism to quantum mechanics it is the vector
potential A, and not just the field strength that plays a central role. Minimal coupling

involves replacing the momentum operator by its covariant generalization

P=—iV — —i(V — ied) (1.12)
with e the electric charge. The Schrodinger equation
81/) 1
=——(V—ieA 1.1
i = (T — e A+ Vi (1.13)

is then invariant under the combination of a gauge transformation on the vector potential

and a phase transformation of the wave function:
b — ey
A— A- Vx A-— ZEXVe_wX
e

(1.14)

The latter form of the gauge transformation has been used to indicate that the fundamental
quantity is the U(1) group element e**X and not x itself.

Now returning to duality, we can ask, following Dirac, whether it is possible to add
magnetic source terms to the Maxwell equations without disturbing the consistency of the
coupling of electromagnetism to quantum mechanics. Dirac’s argument [22], adapted to
a modern perspective following the work of Wu and Yang [23] is given in the following

section.



1.8. The Dirac Monopole d la Wu-Yang

Since we certainly do not believe that electromagnetism is correct down to arbitrarily
small distance scales, let us first try to find a consistent description of a magnetic monopole
excluding from consideration a region of radius rg around the center of the monopole. That
is for r > rg we have a magnetic field

gr

B =
42

(1.15)

and we want to find a consistent description of quantum mechanics for » > rq in the pres-
ence of such a monopole magnetic field. Mathematically we are looking for a description
in R? — {0}.

To couple a quantum mechanical charged particle to a background field we need the
vector potential, but this seems inconsistent with having a magnetic monopole field. The
solution involves making use of the ambiguity relating the vector potential to the field
strength. To be specific, we can try to use different vector potentials in different regions as
long as the difference between them on overlap regions is that of a gauge transformation.
Then the physically measurable field strength will be continuous and well defined. The
simplest way to accomplish this is to divide a two-sphere S? of fixed radius r > 7 into a
Northern half N with 0 < 6 < /2, a Southern half S with 7/2 < § < 7 and the overlap
region which is the equator E at # = /2 (if desired the overlap region can be taken to be
a band of finite width including the equator). The vector potential on the two halves is

then taken to be [23]

Ay — g (1 - cos ) &
47r  sinf (1.16)
- g (14 cosh) . '
AS = — €p-

4d7r  sinf

Note that on the two halves of the two-sphere the magnetic field as given by B=VxA
agrees with (1.15). Note also that Ay g have singularities on (S, N) but are well defined
in their respective patches.

Now to see if this construction makes sense we must check that the difference between

Apn and Ag on the overlap region is indeed a gauge transformation. We have at § = 7/2

— —

Ay—As=-Vx, x=-2
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so that the difference is a gauge transformation. However the gauge function x is not
continuous. This was in fact inevitable as the following calculation of the enclosed magnetic

charge demonstrates:
g= / By -dS + / Bg-dS = / (Ay — Ag) - dl = x(0) — x(27). (1.18)
N s E

But physics does not require that y be continuous. As is clear from (1.14), physical
quantities will be continuous as long as e ~%X is continuous. This then gives us the condition
e~ =1 or

eg = 2mn, nezZ (1.19)

which is the celebrated Dirac quantization condition [22].
Let me pause to make a few comments about what we have done so far.

1. As observed by Dirac, the presence of a single magnetic monopole anywhere in the
universe is sufficient to guarantee that electric charge must be quantized. The quan-
tization of electric charge is of course one of the fundamental experimental facts in
particle physics and this provides an attractive explanation of why this should be the
case.

2. The U(1) group of gauge transformations has elements e~*°X. If charge is quantized
in units of some fundamental quanta e; then y = 0 and x = 27 /e; give the same
gauge transformation. That is the range of the parameter y is compact. It is useful
to make the distinction between the compact one-parameter group which we will call
U(1) and the non-compact one-parameter group which we will call R which arises if
charge is not quantized and thus the parameter range is the whole real line. Magnetic
monopoles require a compact U(1) gauge group. Conversely, whenever a theory has
a compact U (1) gauge group it has magnetic monopoles. As we will see this includes
grand unified theories where the U(1) group is compact because it is embedded in
a compact Lie Group such as SU(2) but it also includes Kaluza-Klein theory where
the U(1) arises from symmetries of a compact space and string theory where the
compactness seems necessary but is not yet completely understood in all cases.

3. Mathematically what we have done is to construct a non-trivial U(1) principal fibre
bundle. The base manifold is an S? at fixed radius which we cover with two coordinate
patches. The fibers are elements of U(1). The fibers are patched together with gauge
transformations which are the transition functions. The magnetic charge is the first

Chern class of this principal fibre bundle.
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4. In the real world the low-energy gauge group includes more that just the U(1) of elec-
tromagnetism, it includes SU(3) of color and there are quarks which carry fractional
electric charge. Must the Dirac condition be satisfied with respect to the electron
or the quarks? The answer to this involves delving into monopoles in grand unified
gauge theories. The brief answer is that, viewed from a distance, color is confined and
monopoles must only satisfy the Dirac condition with respect to the electron. When
viewed close-up such monopoles must also carry a color magnetic charge and the com-
bination of the color magnetic charge and ordinary magnetic charge must satisfy a

generalization of the Dirac quantization condition. For details see [24].

1.4. The ’t Hooft-Polyakov Monopole

So far we have argued that there is a sensible quantum mechanics which includes
magnetic monopoles as long as the charge is quantized and as long as we do not ask what
happens inside the monopole. However there is in this framework no way to determine
most of the properties of these monopoles including their mass, spin, and other quantum
numbers. I now want to discuss a beautiful result of 't Hooft and Polyakov [25,26] which
allows us to probe inside the monopole and study its properties in detail.

Given that monopoles make sense if and only if the U(1) gauge group is compact, it
makes sense to look for them in theories where U(1) is compact because it is embedded
inside a larger compact gauge group 3. The simplest possibility is the embedding U(1) C
SU(2) and it is this possibility which will occupy our attention for most of these lectures.

We will take as a starting point the Yang-Mills-Higgs Lagrangian

1 a apv 1 a a
L=—Fy,F* 4+ SD'O"D, 0" — V(D) (1.20)
where
F, = 0,A% — 0, A% + ec®™ AV Af (1.21)

and the covariant derivative of ® is

D, ®* = 8,9 + e Ab &° (1.22)

3 Compact U(1) groups can also arise in Kaluza-Klein theory and in string theory and there

one also finds magnetic monopole solutions [27,28,29].
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with a,b,c = 1,2,3 labeling the adjoint representation of SU(2). The potential V(®) is
chosen so that the vacuum expectation value of ® is non-zero. To be concrete we take
V(®) = A\(®49* — v?2)2/4.

By varying (1.20) with respect to Aj, and @ we obtain the equations of motion

DMFa;u/ — eeabc(I)sz/q)c

L (1.23)
(D'D,®)* = —A®* (BB’ — v?).

The Bianchi identity,
D, x F*" =0, (1.24)

follows from the definition of F**".

We will for the most part be interested in static solutions to the equations of motion
(1.23). We will later include quantum effects by quantizing small fluctuations about such
classical solutions.

It will also be useful in what follows to have an expression for the energy-momentum

tensor for this theory. Straightforward computation gives

QW = PP 4 DIGIDY R — v L (1.25)

For v = 0, or for vanishing potential ( A\ = 0 ) the theory defined by (1.20) has a classical

scale symmetry®. The conserved current is the dilation current D, = x¥0©,, with
0,D"* =0, =0. (1.26)

The case V(®) = 0 will occupy us later. We will argue that it still makes sense in this case
to choose ® to have an arbitrary but non-zero expectation value. This choice spontaneously
breaks scale invariance. The resulting Nambu-Goldstone boson is traditionally called the
dilaton, and is not to be confused with the “dilaton” field in string theory. Quantum

mechanically scale invariance is broken by renormalization and the trace of the energy

4 A canonical computation is tedious and requires the addition of improvement terms to obtain
the symmetric and gauge invariant answer given here. A better procedure is to couple the theory
to a background metric g, and to define the energy-momentum tensor as the variation of the
action with respect to the background metric.

 The theory is also conformally invariant but this will not play an important role in what
follows, basically because spontaneous breaking of scale and conformal invariance only leads to a

single Nambu-Goldstone boson.
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momentum tensor is proportional to the beta function of the theory. Finite theories with
vanishing beta function can thus exhibit quantum scale invariance. The simplest example
of this phenomenon occurs in N = 4 supersymmetric Yang-Mills theory. Understanding
the monopole spectrum in these theories is one of the goals of these lectures. We will
return later to the implications of spontaneously broken scale invariance.

For now we proceed with a discussion of the theory with non-zero potential. We want
to discuss non-trivial solutions to the classical equations of motion but before doing that
it will be useful to first discuss the vacuum structure of the theory. The energy density of

any field configuration is given by the (0,0) component of the energy-momentum tensor,
Qo = 1 (Ea . Ea 4 Bo. Ba 1 TI9T1° + D - ﬁcpa) L V(D) (1.27)

where I1? is the momentum conjugate to ®, II* = Dy®® and E® and B? are the non-abelian

electric and magnetic fields,
Fai — _ pabi

: - (1.28)
Be = — Lk,
It is clear that ©gy > 0 with equality if only if F%* = DF®* =V (P) = 0. The vacuum is
thus given by a configuration with vanishing gauge field and with a constant Higgs field ¢
with @29 = ¢2. 6. A constant Higgs field breaks the gauge symmetry from SU(2) down
to a U(1) subgroup 7. The perturbative spectrum consists of a massless photon, massive
spin one gauge bosons W¥ with mass ev and a Higgs field with a mass depending on the
second derivative of the potential V' at its minimum. For the previous choice of potential
the mass is my = V2.

We can define the Higgs vacuum to be the set of all Higgs configurations which mini-
mize the potential,

My ={®:V(®) =0} (1.29)

In our example this space is just the two-sphere given by > ®*®* = v2.

6 I will abuse notation by writing ®¢ for the vacuum expectation value of the operator ®¢

and hope that it will be clear from the context when I am discussing the full field and when I am
discussing only its vacuum expectation value.

7 This of course is also an abuse of terminology but one that is universal. Gauge symmetries
are not true symmetries but are redundancies in our description of the configuration space of the

theory. As such they are never broken.
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So far we have considered the vacuum configuration and the perturbative excitations
about this vacuum. Now finite energy configurations need not lie in the Higgs vacuum ev-
erywhere but they must lie in My at spatial infinity. Thus for a finite energy configuration
the Higgs field ®*, evaluated as r — oo, provides a map from the S? at spatial infinity

into the S? of the Higgs vacuum,
®:85% - My =52 (1.30)

Such maps are characterized by an integer which measures the winding of one S? around the
other (see Exercise 3). Mathematically, the second homotopy group of S? is the integers,
mo(S?) = Z.

We have argued so far that finite energy configuration have a topological classification
and that the gauge symmetry of SU(2) is broken down to U(1). What is the connection
with magnetic monopoles? I will first give a hand-waving argument. Consider a Higgs
field configuration ®* with winding NV # 0. If the gauge field Aj; vanishes then we have
for the total energy

Energy = /d%c%ﬁ@"&@a + %@'a@.“ +V(®) > /d3x%§fba§®“. (1.31)

Now write the gradient term as a radial derivative plus an angular derivative

(Vd*)? = (8§a)2 + (7 x VO)? (1.32)

If N # 0 then there must be non-vanishing angular derivatives of ®“ at infinity which

make the second term in (1.32) go like r =2 for large r. Therefore the total energy is

2
d
Energy>/rr2r (1.33)

which diverges linearly. Therefore to have finite energy configurations with N # 0 we must
have non-zero gauge fields. From the above argument it is clear what we need to ensure
finite energy. With non-zero gauge fields the energy involves the covariant derivative of ®¢
rather than the ordinary derivative, we can make the energy finite if there is a cancellation
between the angular part of the vector potential (which must therefore fall off as 1/7) and
the angular derivative of ®. This 1/r falloff in the angular component of A, gives rise to
a non-zero magnetic field at infinity. Thus the connection between topology and magnetic

charge comes about by demanding finite energy of the field configuration.
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This hand-waving argument can be made somewhat more explicit. I will however not
try to make it less hand-waving. The reader who wishes a more precise argument should
consult the monopole reviews cited earlier. In order to have finite energy we need to ensure

that the covariant derivative of ®“ falls off faster than 1/r at infinity. Let us write
D, ®* = 8,9 + e AL ~ 0 (1.34)

to indicate that the leading 1/r terms must vanish at large r. Then the general solution

for the gauge field, to this order, is given by

a 1 aoc (& ]' a
A~ =€ bepbg, ¢ + ~0" A, (1.35)

with A, arbitrary.

If we now compute the leading order behavior of the non-abelian gauge field we find
1

F = — @2 (1.36)
v

with

FH = —%ige“bcq)a@“@bﬁ”fbc +0rAY —0"A, (1.37)
and the equations of motion imply 0, F'*" = 0,, * F*¥ = 0. Thus we learn that outside the
core of the monopole the non-abelian gauge field is purely in the direction of ®“, that is

the direction of the unbroken U(1). The magnetic charge of this field configuration is then

. 1 y - ATt N
g= / B-dS=_—, / ciikeabegagipbgk e = = (1.38)
s2. 2ev® Jgz e
with N the winding number of the Higgs field configuration.
We thus find a quantization condition
eg = 4nN. (1.39)

This is same as the Dirac quantization condition (1.19) for even values of n in (1.19). The
reason for the additional restriction on n is that in this theory we could add fields in the
fundamental 2 representation of SU(2). These would carry electric charge +e/2 and the
Dirac quantization condition with regard to these charges requires (1.39).

It may seem rather puzzling that we have found the same quantization method by

rather different arguments. The Dirac argument just relies on what goes on outside the
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monopole while the quantization condition for 't Hooft Polyakov monopoles involved the
topology of non-Abelian Higgs fields. The connection between these two points of view
is beautiful and deep and is covered in detail in [12,13]. Very briefly, if we are given a
gauge group G broken down to a subgroup H by the Higgs field expectation value then the
vacuum manifold is My = G/H (modulo some technical assumptions) and the topology
of the Higgs field at infinity is classified by 7mo(G/H). On the other hand, at infinity the
gauge group is just H, and the Wu-Yang version of the Dirac monopole involves patching
H gauge fields along the equator and these are classified by 71 (H). But a famous result

(proved in the references) asserts that
mo(G/H) =m (H) (1.40)

(as long as G is simply connected) thus providing the link between the two points of view.

1.5. Exercises for Lecture 1

E1. Consider a point electric charge e and a point magnetic charge g. Compute the field
angular momentum

L= /d3rF>< (E x B) (1.41)

a) Show that L is well-defined and independent of the distance between e and g.

b) Show that demanding that the angular momentum be quantized in units of /2
yields the Dirac quantization condition.

E2.

a) By generalizing Exercise 1 or otherwise prove the Dirac-Zwanziger-Schwinger con-
dition for two point charges (dyons) with combined (electric,magnetic) charges
(e1,91) and (e, g2)

€1ge — €291 = 27n. (1.42)

b) Explore the allowed solutions to (1.42) assuming the existence of an electron
with charges (e,0). Recall that under CP (e, g) — (—e, g). Show that there are
solutions which lead to a CP violating dyon spectrum. Show that there are C'P
invariant solutions with dyons carrying half of the electric charge of an electron.

E3.
a) If ¢ — vre as r — oo show that

1 o .
N = / dSeTF eI pLHF P = 1. (1.43)
S

87wl

2
oo

b) Construct a map S2 — S? having arbitrary integer winding number N.
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2. Lecture 2
2.1. Symmetric Monopoles and the Bogomol’'nyi Bound

In the previous lecture we have argued that finite energy configurations with non-
zero topological charge in the theory defined by (1.20) are necessarily magnetic monopoles
satisfying the Dirac quantization condition. While one can argue indirectly for the existence
of such solutions to the equations of motion, it would be nice to construct solutions directly.
Unfortunately, in general this only turns out to be possible numerically.

To construct a solution even numerically it is necessary to make some simplifying
assumptions regarding the form of the gauge and Higgs fields. We would expect the
lowest energy solution to be the one of highest symmetry compatible with having non-
zero topological charge. The theory defined by (1.20) is Lorentz invariant and hence
rotationally invariant. Let J® be the generators of the rotation group SO(3)g. Since the
scalar Higgs field must vary at infinity to have non-zero topological charge it is clear that
the solution cannot be invariant under SO(3)r. The Lagrangian (1.20) also is invariant
under global gauge transformations by the group SO(3)s with generators T%. Since the
vacuum expectation value of the Higgs field is non-zero the monopole solution cannot be
invariant under SO(3)g. However, it is allowed to be invariant under the SO(3) diagonal
subgroup of the product of rotations and global gauge transformations SO(3)r x SO(3)q,
that is it is invariant under the generators K=J+T. By imposing this SO(3) symmetry
as well as a Zs symmetry which consists of parity plus a change of sign of ® one is left

with a fairly simple ansatz in terms of two radial functions H, K:

~a

o= H (ver)
T (2.1)
7
Al = - —(1 - K :
)

Substituting this ansatz into the equations of motion (1.23) yields coupled differential
equations for H, K which can be solved numerically subject to the boundary conditions
K(ver) — 1, H(ver) — 0, r—0;
(2.2)
K(ver) — 0, H(ver)/(ver) — 1, T — 00.
In these lectures we will not need the detailed form of these solutions and for the most
part will be interested in a specific limit of the equations (1.23) where an explicit solution

is available. To understand the nature of this limit we first discuss a general bound on the
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mass of configurations with non-zero winding number known as the Bogomol’nyi bound
[30].
To prove the Bogomol’nyi bound we first note that we can write the magnetic charge

as

v (%

g :/ B-dS = —/ ®*Bo . dS = - /Ba (D®)*d3r (2.3)
S 52

2
using the Bianchi identity D-B* =0 and integration by parts. Then if we consider a
static configuration with vanishing electric field the energy (mass) of the configuration is

given by
My = /d?’r (%(Eﬂ . Ba 4 Do . Do) + V(q>)) > /d%%(éx . Ba 4 Do° . Do)

— —

=1 /d?’r(éa — D®%) - (Ba — D®?) + vg

(2.4)
using (2.3). We thus have the bound
My > vg (2.5)
with equality iff V/(®) = 0 and the first-order Bogomol’'nyi equation
Be = Do (2.6)

is satisfied. Note that the bound has been derived for positive magnetic charge. For
negative magnetic charge we get (2.5) with a minus sign on the right. Thus the general
bound is Mjy; > |vg|. In Exercise 4 this bound is generalized to include configurations
with non-zero electric field as well.

To saturate the bound (2.5) we require that the potential vanish identically and that
the Bogomol'nyi equation (2.6) be satisfied. Let us first discuss vanishing potential. Clas-
sically we are free to choose V(®) = 0 but we know that quantum mechanically there will
be corrections to V' [31]. Eventually we will consider supersymmetric theories which have
potentials with exact flat directions protected by supersymmetry. For the meantime we
will consider just the classical theory and impose V(®) = 0 by hand. The next question is
whether symmetry breaking makes sense with V(®) = 0. We can impose as a boundary
condition that ®?®* — v? as r — oo for arbitrary v. Although there is no potential, a
change of the theory from one value of v to another value requires changing the Higgs field
at infinity. Since we are in infinite volume such a motion requires infinite action, even in
the absence of a potential. Therefore for each value of v the imposition of this boundary
condition at infinity gives a well defined Hilbert Space which does not mix with Hilbert
spaces built on other values of v. In other words each value of v determines a superselection

sector of the theory.
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2.2. The Prasad-Sommerfield Solution

Following the previous discussion we now proceed to look for a solution of (2.6) with

spherical symmetry. The ansatz (2.1) when substituted into (2.6) yields the equations
yK' = —KH,; yH = H — (K*—1) (2.7)

with y = ver and H' = dH /dy. Manipulation of these equations yields the solution [32]

H(y) =ycothy — 1
Yy (2.8)
sinhy’

K(y) =

The long range behavior of this solution is important. At large r, K vanishes expo-
nentially at distances greater than 1/(ev) = 1/My, with My, the mass of the W+ gauge
bosons resulting from spontaneous symmetry breaking. Physically this means that there
are W fields excited in the core of the monopole, but that outside the core the magnetic
field falls like 1/72 as required for a magnetic monopole. The form of the Higgs field is
also interesting. There is an exponentially decaying piece, but also a piece which falls of

only as 1/r. For large r we have

T — it — (2.9)
er

This power law falloff is due to the massless dilaton field in this scale invariant limit.
To define the dilaton field D we write fluctuations of ®* about the asymptotic monopole

configuration in the form
Pt = vi®el = v + vPUD + - - (2.10)
We can then define a dimensionless “dilaton charge” as
Qay=v | VD-dS (2.11)

and using (2.9) we see that for the monopole solution Qg = 4mw/e = g = My /v.
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2.8. Collective Coordinates and the Monopole Moduli Space

Given a classical solution in field theory one often finds that the solution is part of
a multi-parameter family of solutions with the same energy. The parameters labeling the
different degenerate solutions are called collective coordinates or moduli and the space
of solutions of fixed energy (and topological charge) is called the moduli space of solu-
tions. Before discussing the general situation it will be useful to identify the four collective
coordinates of a charge one BPS monopole [33].

To start with, in (2.8) we have constructed a monopole sitting at the origin. By
translation invariance of (1.20) a monopole sitting at any other point in R3 is also a
solution with the same energy. If we let X denote this center of mass collective coordinate
then the general solution is

qr+X), Al

1 cl

(7 + X) (2.12)

with the classical solutions at X = 0 given by (2.1). We can construct a slowly moving
monopole by letting X depend on time so that we have fields A{ (7 + X (t)). This time
dependence will of course give rise to an electric field and the energy of the monopole will
exceed the Bogomol'nyi bound by the kinetic energy of the monopole. This is precisely
what should happen for motion in the moduli space, the potential terms stay constant and
the kinetic terms are proportional to the velocity of the motion along the moduli space.

The remaining collective coordinate is somewhat more subtle. At this point it is useful
to recall some basic facts about the configuration space of gauge theories. In gauge theory it
is important to make a distinction between small gauge transformations g which are those
approaching the identity at spatial infinity and large gauge transformations which do not
approach the identity at spatial infinity. These play different roles in gauge theory. In
particular given the space of gauge and Higgs fields A = (A, ®) the physical configuration
space is given by

C=A/G (2.13)

where G is the group of small gauge transformations. Thus physical states are invariant
under small gauge transformations and they do not act as symmetries of C. Rather, they
describe a redundancy in our description of the theory when we work just in A. Large
gauge transformations on the other hand do not identify points in C but instead act as

true symmetries which relate different points in C with the same properties.
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With this in mind we will try to identify an additional collective coordinate associated
to global U(1) electromagnetic gauge transformations. Heuristically we expect such a
collective coordinate because the monopole solution contains excitations of the electrically
charge W¥ fields in its core.

We will work in Ag = 0 gauge with a BPS monopole configuration A;, ® obeying the
equation B; = D;®. A deformation of this solution 0A;(Z,t),d®(Z,t) which keeps the

potential energy fixed must obey the linearized Bogomol’'nyi equation
€ijk D0 A = D;id® + [6A;¢] (2.14)

and the Gauss law constraint
Di6A; + [®,08] =0 (2.15)

The unique solution (modulo small gauge transformations) is

dA; = Di(x(t)®)
50 =0 (2.16)
0Ag = Do(x(t)®) — x®

where x(t) is an arbitrary function of time. Note that Ay vanishes identically, it has been
written in the form (2.16) to make clear the relation with gauge transformations. This
solution has the following properties
1. It obeys (2.14)and (2.15)
2. For x = 0 the deformation is by a large gauge transformation with ¢ = eX® so that y
is a physical zero mode.
3. For x # 0 the linearized Bogomol’'nyi equation is still satisfied so there is no change in
the potential energy (B2 + (D®)?) but there is an increase in the kinetic energy (E2).
If we think of the configuration space as a mountain range then the moduli space is a
flat valley. Motions that stay purely along the valley have fixed potential energy but
variable kinetic energy, as we have found.
4. Since the unbroken gauge group U(1) is compact, x is a periodic coordinate. Therefore
the one monopole moduli space is topologically M; = R? x S*.
So far we have limited our discussion to monopoles with N = 1. It is at first sight
not clear whether we expect static solutions to exist with N > 1 and if they do what the
collective coordinates should be. Physically, we can argue as follows. Away from the BPS

limit the photon is the only massless field in the theory. Multi-monopoles of the same sign
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magnetic charge which are well separated will thus experience a Coulomb repulsion and we
thus do not expect static solutions for such a configuration. On the other hand in the BPS
limit the Higgs field is really a dilaton of spontaneously broken scale invariance (at least
classically) and we have seen that the one monopole solution carries a charge under this
Higgs field. Since Higgs exchange is always attractive, there can be a cancellation between
the Coulomb repulsion and Higgs attraction. Classically this cancellation does occur as
a consequence of the fact that the magnetic charge and dilaton charge of the monopole
are equal as was found below (2.11). This equality is not accidental but has its roots in
spontaneously broken scale invariance which forces the dilaton charge of any state to equal
its mass.

Thus we might expect on physical grounds that there are solutions given by well sepa-
rated static monopoles and that for magnetic charge k£ the moduli space is 4k dimensional
with the collective coordinates being the locations of the k£ monopoles and their dyon de-
grees of freedom. This is correct, at least for large separation, although the above hardly
constitutes a serious argument. A careful analysis of the issue would take us to far afield.
It basically involves the use of index theory to count perturbations of the Bogomol'nyi
equations. A discussion suitable for physicists may be found in [34], a mathematical proof
is given in [35].

Suitably explicit multimonopole solutions are hard to come by but in spite of this it
is possible to say some general things about the structure of the multi-monopole moduli
space. In the final lecture we will discuss the structure of the two-monopole moduli space
in some detail.

Before proceeding it is useful to make use of a connection between the Bogomol'nyi
equations on R3 and the self-dual Yang-Mills equations on R*. If we write A4 = ® then

we can rewrite the Bogomol'nyi equation (2.6) as
Fab = *Fab (217)

where a,b=1---4, we work on R* with coordinates 1, z2, x3, z4 and Euclidean signature
so that xx = 1, and we restrict ourselves to configurations which are independent of
x4. This suggest that there is a deep connection between the problem of solving the
Bogomol’'nyi equations and the problem of solving the self-dual Yang-Mills equations. We

will just use this connection to simplify the notation. For example Gauss’ Law reads

DyA, =0 (2.18)
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and gauge transformations take the form
0A, = D, A (2.19)

where it is always understood that all quantities are independent of z4.

Now the k£ monopole moduli space My is defined as the space of solutions to the
Bogomol’'nyi equations having topological charge k. Tangent vectors to My, d,A,, are
deformations of a given charge k solution A, — A, + d,A, which satisfy the linearized

Bogomol’nyi equations
Dobo Ay — DpbaAq = 2eapea(DedaAg — DeboAc) (2.20)
and are orthogonal to (small) gauge transformations
D 0,A, =0 (2.21)

so that they leave one in the physical configuration space.

Given such a tangent vector the metric on My is
gaﬁ = —/deTréaAaégAa (2.22)

This metric is inherited from the action for the underlying gauge theory. To see
this, imagine we are given a charge k& BPS monopole solution A, (%, z%) depending on
4k collective coordinates z®. By definition the potential energy is independent of the
z%. Now one might think that we could construct tangent vectors to M simply by
differentiating with respect to the z®. This is not quite correct because there is no guarantee
that the resulting change to A, is orthogonal to gauge transformations, in other words
differentiating with respect to the z%* may include a gauge transformation. However we
can always cure this by undoing the gauge part of this variation by writing the tangent
vector as

0A

604140, = 87 - Daea (223)

where €, (&, 2%) is a gauge parameter chosen to ensure that (2.21) is satisfied.

To construct the metric we consider slow time dependent variations of the collective

coordinates z%(t). If we write

Ao (T, 2°(1), A = %, (2.24)
then Fy, = 2%0,A, and the action is
1 1
S=-3 / d>xdt TrFo, F** = 3 / dtGopi® 2’ (2.25)

with G, as in (2.22).
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2.4. Fxercises for Lecture 2

E4. For a dyon with electric and magnetic charge (g, g) prove the bound
M > v(¢® + ¢*)V2 (2.26)

E5. Following the discussion in the lecture derive the action for the collective coordinates
X , x of the charge one BPS monopole. Quantize this action to deduce the spectrum
of states in the magnetic charge one sector. Note that the states you obtain by
quantizing the dyon collective coordinate x consist of an infinite tower of states of
increasing mass and electric charge. Thus in the monopole sector electric charge is
classically continous, but is quantized when treated quantum mechanically.

E6 Compute the generators J* and T of rotations and global gauge transformations and
verify that the ansatz (2.1) is left invariant by the action of J + T.

E7. It is possible to view the gauge parameter €,(x, z) as a connection on My with co-
variant derivative s, = 0y, + [€n, ]. Show that J, A, can then be viewed as a mixed
component of the curvature of the connection (A4, €,) on R* x My,

E8. Compute the dilaton charge of a massive W™ boson at rest at the origin and show that
it is equal to my /v. Show that this follows from the general theory of spontaneously

broken scale invariance.

3. Lecture 3
3.1. Witten Effect

There is a famous term, the 6 term, which can be added to the Lagrangian for Yang-

Mills theory without spoiling renormalizability. It is given by

062 a auv
~ 352 L (3.1)

Lo =

This interaction violates P and C'P but not C'. Since it preserves C' we may expect that it
is consistent with the existence of a duality symmetry of the theory. As is well known [36],
this term is a surface term and does not affect the classical equations of motion. There is
however 6 dependence in instanton effects which involve non-trivial long-range behavior of
the gauge fields. As was realized by Witten [37], in the presence of magnetic monopoles 6
also has a non-trivial effect, it shifts the allowed values of electric charge in the monopole

sector of the theory.
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I will give two explanations of this effect, the first is borrowed from Coleman [14], the
second from Witten [37]. First consider pure electromagnetism. Then the 6 term reduces

to the QED interaction

fe? - -

Now consider this interaction in the presence of a (Dirac) magnetic monopole. Writing the

fields as a monopole field plus corrections we have

E =VA
5 3.3)
B = A+ —=——.
VoAt 47 12
Substituting into the action density (3.2) we obtain
3 062 3 = = - g ’f’
Ly= [ d°rLy = — dTVAO-(VXA—l———)
82 47 12 (3.4)
e?g 3 - 7 fe%g 3 3/ .
:_3273/d TAOV-T—2:—87T2 /d rApd”(T)

which we recognize as the coupling of the scalar potential Ay to an electric charge of
magnitude —fe?g/87? located at the origin. In other words, the magnetic monopole has
acquired an electric charge. For a minimal charge monopole with eg = 47 the electric
charge of the monopole is —ef/27. Although this derivation gives the correct answer, one
may feel a bit uneasy about the method used. We don’t really know what is going on
at the origin for a Dirac monopole yet this calculation suggests a delta function electric
charge density located at the origin.

A more fundamental derivation which applies to the full SU(2) gauge theory and
which does not suffer from this ambiguity runs as follows. We have seen that the dyon
collective coordinate of the monopole allows it to carry electric charge. The dyon collective
coordinate arises through U(1) gauge transformations which are constant at infinity. We
now consider these transformations in the presence of a theta term. We are interested in
gauge transformations, constant at infinity, which are rotations in the U(1) subgroup of
SU(2) picked out by the gauge field. That is, rotations in SU(2) about the axis ®* =

®/|®%|. The action of such an infinitesimal gauge transformation on the field is

a ]' a
6A; = —(D,®) (3.5)
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with @ the background monopole Higgs field. Let N denote the generator of this gauge
transformation. Then if we rotate by 27 about the d axis we must get the identity 8. That
is, physical states must obey

2N =1, (3.6)
It is straightforward to compute N using the Noether method,

oL
= _— (HA? .
N = gopiz (3.7)

with 6 A}, given by (3.5). Including the theta term one finds

N:9+9ﬁ (3.8)

e 82

where .
9=~ /d?’mDi@an’

| (3.9)
Q=- /d?’xDi@“Ef
v

are the magnetic and electric charge operators respectively. The condition (3.6) thus

implies that

(3.10)

where n. is an arbitrary integer and n,, = eg/4m determines the magnetic charge of the

monopole.

3.2. Montonen-Olive and SL(2,7) Duality

Let us pause for a moment to see what we have accomplished in trying to establish a
duality between electric and magnetic degrees of freedom. In the BPS limit at 8 = 0 we
have a classical spectrum indicated in the table below

Table 1

8 At this point we are working in a theory with gauge group SU(2)/Z> = SO(3) since all states
are in the adjoint representation. In this theory a 27 rotation gives the identity. Later, when
we consider SU(2) and states in the fundamental representation this condition will be modified
since then a 27 rotation gives an element of the center of SU(2) which acts non-trivially on the

fundamental representation.
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Mass (Qe, Q) Spin

Higgs 0 (0,0) 0
Photon 0 (0,0) 1
W+ ve (e,0) 1
M* Vg (0,9) 0

As is evident from the table, all of these states saturate the Bogomol’'nyi bound M >
vy/Q? + Q2, with Q,,, = 47n,, /e and Q. = nee — en,,0/27 (with 6 = 0 for the moment).
At weak coupling, where this analysis should be a good first order approximation to the

full quantum answers, we have
4
My =ev<<v, My=gv=—v>>v (3.11)
e

so although we have constructed a theory with both electric and magnetic charges,
monopoles are much heavier than W bosons at weak coupling. However we would ex-
pect that to get a dual theory we would also have to exchange the role of electric and
magnetic charge. Given the quantization condition this implies that we should look for a

duality transformation which acts on the fields as in (1.8) but also takes

e—g=— (3.12)
e

and relabels electric and magnetic states.

Based on the classical spectrum shown in Table 1 and some other arguments Montonen
and Olive proposed that this should be an exact duality of the SO(3) Yang-Mills-Higgs
theory in the BPS limit [1]. However, as noted by the authors of [1], there are some obvious
problems with this proposal. They are:

1. Quantum corrections would be expected to generate a non-zero potential V(®) even
if one is absent classically and should also modify the classical mass formula. Thus
there is no reason to think that the duality of the spectrum should be maintained by
quantum corrections.

2. The W bosons have spin one while the monopoles are rotationally invariant indicating
that they have spin zero. Thus even if the mass spectrum is invariant under duality,

there will not be an exact matching of states and quantum numbers.

28



3. The proposed duality symmetry seems impossible to test since rather than acting as a
symmetry of a single theory it relates two different theories, one of which is necessarily
at strong coupling where we have little control of the theory.

As we will see later, the first two problems are resolved by embedding the theory into
N = 4 super Yang-Mills theory [38]. The third problem is still with us in that there are
few concrete ways to test the proposal. However there are non-trivial tests and the first of
these arose by first considering an extension of duality to a larger set of transformations.

It is not hard to see that if the basic duality idea is correct then it should have an
interesting extension when the effects of a non-zero theta angle are included. Including
the theta term, the Lagrangian we are considering is determined by two real parameters,

e and 6. We can write the Lagrangian as

1 .. fe? y 1
L=—-F"F,, — F" % F,, — ~D'®D,®
4 3272 2 (3.13)
1 o Amio . '
= — g I+ 5 (P i w F) (B +i % Fly) — 5 DD, ®

We thus see that the Lagrangian can be written in terms of a single complex parameter

0 47
= — 4+ —. 14
T 27r+ e2 (3.14)

As an aside, note that n instanton effects in this theory are weighted by 277,

Since physics is periodic in 6 with period 27 the transformation
T—T1+1 (3.15)

should leave physics invariant up to a relabeling of states. At # = 0 the duality transfor-

mation (3.12) is given in terms of 7 by

1
. 3.16
-2 (3.16)
It thus seems reasonable to suspect that at arbitrary 6 the full duality group is generated
by transformations of the form (3.15) and (3.16). It is a well known fact that these two

transformations generate the group SL(2, Z) of projective transformations

ar +b

ot d a,b,e,de Z, ad—bc=1. (3.17)

T —
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Note that since €2 > 0, 7 naturally lives on the upper half plane Im7 > 0. Further-
more, one can check that one can use SL(2, Z) transformations to map any 7 in the upper
half plane into the fundamental region defined by —1/2 < Rer < 1/2 and |7| > 1.

In order for (3.17) to be a symmetry we know that there must in addition be a
relabeling of states. From (3.10) we see that the transformation (3.15) shifts the electric
charge by —1 (for n,, —1) and we know from the earlier discussion that the transformation
(3.16) requires an exchange of electric and magnetic quantum numbers. Putting these two

facts together we deduce that the action of SL(2,Z) on the quantum numbers should be

Ne a —b Ne
() = (2 20 () 219
Finally, let us consider the spectrum of states saturating the BPS bound M? > v2(Q?+
Q?,). We know the allowed values of Q. and Q,, are

4
Qm = _ﬂ-nm
€ (3.19)

0
Qe = nee — nme—.
2

Substituting these into the formula for M? and writing the result in terms of 7 yields

1 1 —Rert Ne
M22471'1)2(ne, nm)—(—ReT |7_’2 )( ) (3.20)

Imr Nm

It is left as an exercise to verify that the mass formula in this form is invariant under
SL(2, Z) transformations.

The extension of electromagnetic duality to SL(2, Z) that we have uncovered is usually
referred to as S-duality. The name is a historical accident. Although this extension was
first discovered in the context of lattice models [39] it was discussed as a symmetry of N = 4
Yang-Mills theory first in the low-energy limit of toroidal compactifications of string theory
[40]. In that context the variable 7 becomes a dynamical field usually denoted by S and the
SL(2,Z) transformations of S were called S-duality to distinguish it from other SL(2, Z)

transformations in string theory which are (superficially) unrelated.

3.3. Exercises for Lecture 3

E9. Carry out the computation of the generator A/ using the Noether method. Verify that
dyons with electric charge QQ = ne — efl /27 satisfy the DSZ quantization condition but
violate C'P. Show that the interaction Ly violates C'P.
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E10. Find two points on the boundary of the fundamental region described in the text
which are left fixed by some element of SL(2, Z) other than the identity. What order
are these elements of SL(2,7) and what are the values of 6 and e? at the two fixed
points?

E11. Show that M? is left invariant by the SL(2, Z) transformation given by (3.17) and
(3.18). For those familiar with string theory note the close connection between the
form of M? and the Poincare metric on the upper half plane.

E12. T have been sloppy about the precise group which is acting in (3.17) and (3.18).
Show that there are order two elements which act trivially on the couplings but non-
trivially on the charges as in (3.18). What do these order two elements correspond to

physically?

4. Lecture 4
4.1. Monopoles and fermions

As we have seen in the previous discussion, duality is inherently a quantum symmetry
since it relates weak coupling to strong coupling. As such we cannot hope to understand it
easily unless we are working in a theory where quantum effects are under rather precise con-
trol. At our current level of understanding this limits us to theories with supersymmetry,
and the more supersymmetry, the more control we have of the dynamics. Supersymmetry
involves the addition of fermion fields with special couplings. However many of the fea-
tures of fermions in monopole backgrounds are independent of supersymmetry. Thus we
will start out with a general discussion of the effects of fermions and then later generalize
our results to the supersymmetric context.

We will first consider Dirac fermions with couplings to the fields appearing in (1.20)

determined by the Lagrangian

£1/1 = ian’yu(D;ﬂp)n - Z'EnTr?m(I)awm (41)
with 7% the anti-Hermitian generators of SU(2) in the representation r. We will consider
only fundamental and adjoint fermions in which case we take

7o = lra pm=1,2 (4.2)

nm 2 nm
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with 7% the Pauli matrices or

T . =€, n,m=1,2,3. (4.3)

nm

It will also be convenient following [41] to use a representation of the gamma matrices with

0 __ O —1 i —iUi O
i _<i 0) 7_( 0 w> (4:4)

obeying {y#,7*} = 2n**. We will also write o’ = %4,

The Dirac equation is then
(iv"D,, — @)y = 0. (4.5)

For a monopole configuration with Ag = 0 we can look for stationary solutions of the form

Y(T,t) = etPhap (). Writing 1 in terms of two-component spinors

% = (if) (4.6)

Dx~ = (ioc'D;+ ®)x~ = Ex"
Z,DTX+ = (iaiDi —®)xT = Ex~

we then have the coupled equations
(4.7)

Now (4.7) will have solutions with |E| > 0 and may also have solutions with £ = 0. We
can quantize the fermion fluctuations about a magnetic monopole by expanding v in terms
of eigenfunctions of the Dirac operator (4.7) and then interpreting the coefficients multi-
plying the eigenfunctions as creation and annihilation operators with anti-commutation
relations which follow from the canonical anti-commutation relations of 1. Modes with
|E| > 0 will thereby lead to configurations with energy greater than the ground state en-
ergy of the monopole. On the other hand, if (4.7) has solutions with £ = 0 then the states
created by the corresponding creation operators will be degenerate in energy with the
original monopole solution. Thus we can view the zero energy eigenfunctions of the Dirac
operator as “fermionic collective coordinates” in the sense that they describe Grassmann
valued deformations of the monopole which keep the energy fixed.

Thus to study the structure of the monopole ground state we must study the zero
energy solutions of (4.7), that is we want the solutions of Px* = 0 and PTx~ = 0,
the kernels of I) and IPT. It is easy to see that the kelrlpT = {0} using the fact that

32



kerl?T C ker]ﬁlDJr and that DLDT is a positive definite operator. On the other hand kerlp
is non-zero in a monopole background and can be computed using an index theorem of
Callias [42] which gives

dim kerl) — dim kerlp’ = A(r)nm, (4.8)

with 7, the winding number of the Higgs field (the monopole charge) and A(r) a constant
depending on the representation of the fermion fields and the ratio of the magnitude of
a bare fermion mass to the Higgs expectation value. In the examples we are discussing
A =1 for fundamental fermions and A = 2 for adjoint fermions.

While both fundamental and adjoint fermions have zero modes in a monopole back-

ground, their consequences are somewhat different so we discuss the two cases separately.

4.2. Monopoles coupled to isospinor fermions

For fundamental fermions in the 2 of SU(2) a charge one monopole has a single fermion
zero mode according to (4.8). To be precise, there is a single zero mode wave function but
since the fermion ¢ does not obey any reality condition, the coefficient multiplying the

zero mode should be taken complex. We thus have the expansion
1) = agpy + non-zero modes (4.9)

and the anti-commutation relations for 1) imply
{ag,ag} =1, {agp,ap}= {ag,ag} =0. (4.10)

To construct the monopole ground state we start with a ground state |Q2) with ag|Q2) =0
and then act with ag. This gives a two-fold degenerate ground state consisting of the two
states.

), aflQ) (4.11)

Given this degeneracy it is natural to ask whether there are quantum numbers which
distinguish the two ground states. The standard answer, given in [41], is that this theory

has a fermion number conjugation symmetry

2
b= (G 02) 7Ruvi (112

—0

which changes the sign of the U(1) fermion number charge of any state. The two degenerate

monopole states differ by one unit of fermion number since one obtains one from the other
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by acting with fermion creation operators which carry fermion number one. On the other
hand the fermion number conjugation symmetry can only be respected if the two states
carry opposite fermion number. Thus it is argued in [41] that the two states in (4.11) have
fermion number +1/2. However this argument suffers from the following difficulty. The
discrete symmetry (4.12) is a classical symmetry of the theory which forbids a Dirac mass
term for the matter fermions. On the other hand one can show that instanton effects will
generate such a Dirac mass term which is related to the fact that the symmetry (4.12)
involves a discrete chiral transformation. In other words, the fermion number conjugation
symmetry is anomalous and is not an exact quantum symmetry of the full theory. However,
at @ = 0 the theory is also C'P invariant. CP takes the magnetic charge into itself
but changes the sign of the fermion number charge. Thus C'P invariance enforces the
assignment of fermion number +1/2 to the two ground states.

A more interesting example of charge fractionalization occurs if we take N; flavors of

Dirac fermion coupled to a monopole background with Lagrangian
Ny
—I —I
Lo =Y il VD’ —ifp oy (4.13)
=1

In this theory the U(1) ~ O(2) fermion number symmetry is extended to a O(2Ny) sym-
metry. Of this symmetry only a SU(Ny) x U(1) symmetry is manifest in the Lagrangian
(4.13). To see the full O(2Ny) symmetry note that we can write the Dirac fermions ¢’ in
terms of 2Np Weyl fermions x*,a = 1...2Ny. Furthermore, since the doublet representa-
tion of SU(2) is pseudoreal we can take the x® to all be say left-handed under the Lorentz
group and to all transform the same way under the SU(2) gauge symmetry. If we write
(4.13) in this basis then the quadratic terms involving the x® are O(2Ny) invariant and
O(2Ny) commutes with both the Lorentz group and the gauge group.

Thus we have 2N Weyl fermions transforming as a vector of O(2Ny) and in the zero

mode expansion of ¢! we will have
¢! = alapy + non-zero modes (4.14)

To see what the consequences are for the spectrum it is useful to first rephrase the results
we found for Ny = 1. There we could trade the operators (ay, a(T)) for a pair of self-conjugate

operators (b}, b2) by writing X
ag = 2(6(1) + ibg)

1
ah = (b} — i13)

Sl

(4.15)

.
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The b§, ©+ = 1,2 then obey the Clifford algebra
{bi, b} = 6%, (4.16)

The ground state must furnish a representation of this Clifford algebra and since the
smallest representation is two-dimensional we again conclude that the ground state is two-
fold degenerate.

We can apply the same technique for arbitrary Ny in which case we end up with

operators bj, a = 1---2Ny obeying
{bg, b8} = 5. (4.17)

Representations of this Clifford algebra have dimension 22V+/2 = 2Ns that is the monopole
ground state is now a spinor of SO(2Ny)! This is precisely the phenomenon that allows
one to construct spacetime fermions in the Ramond sector of superstring theory.

Since we have added fermions and changed the global structure of the gauge group
(from SO(3) to SU(2) ) we should also go back and reanalyze the constraint (3.6) which
followed from the action of global U(1) charge rotations. We can repeat most of the
previous discussion but with one change, since we are now working in SU(2) and not
SO(3) a rotation by 27 about some axis does not give the identity but rather gives the
non-trivial element of the center of SU(2) which acts on spinor representations as —1. If

we denote this operator by (—1)# following [5] then we have the relation

exp(27ri(% + Q;L—ﬂm)) = (-1)" (4.18)

If @ = nee — en,,,0/2m then (4.18) says that there is a correlation between the action of
the center of SU(2) and the electric charge, states in spinor representations of SU(2) have
ne half an odd integer and states transforming trivially under the center must have n.
integer. This of course agrees with our expectations in the zero magnetic charge sector of
the theory. In the monopole sector the implications of (4.18) are as follows. Since (—1)#
acts as the center of SU(2) and the fermion fields 1! are doublets of SU(2), (—1) acts
to change the sign of the fermion fields. That is

(D (-1 = —¢! (4.19)

or {(~=1)#,4!} = 0. In the monopole sector, after expanding in zero modes we will

then have {(—1),b¢} = 0 and we must represent the action of (—1)¥ on the 2%¢ fold
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degenerate spectrum and impose the constraint (4.18). But this is a completely familiar

H as the analog of “y° 7.

problem. We can think of the b3 as gamma matrices and (—1)
In other words, the spinor representation of SO(2Ny) of dimension 2™/ is reducible and
splits into two irreducible representations, each of dimension 2¥7~1 with eigenvalues +1
under (—1)#. Thus we learn from (4.18) that in the monopole sector there is a correlation
between the electric charge of dyon states and their transformation properties under the
global SO(2Ny) symmetry. As discussed in [5] this is also required physically in order that
one not make states in monopole - antimonopole annihilation which do not occur in the
perturbative spectrum.

Onme particularly interesting example of this phenomenon occurs for Ny = 4. Then
by the above analysis, the fermion fields 1! carry electric charge e/2 and are in the eight-
dimensional vector representation, 8,, of the global SO(8) symmetry (which we should
really call Spin(8) since there are spinors in the monopole sector.). On the other hand in
the one monopole sector the spinor of dimension 2* = 16 splits into two eight-dimensional
spinor representations 16 — 85 + 8. and from the constraint (4.18) we see that the neu-
tral monopole (or evenly charged dyons) transforms as 8, while the odd charged dyons
transform as 8.. Thus there seems to be a Spin(8) triality as well as a possible electro-
magnetic duality in this theory, at least classically. In fact, when embedded into N = 2
supersymmetric gauge theory, this theory does appear to be self-dual with the SL(2, Z)
duality group extended to a triality action on Spin(8) [5,6,7].

4.8. Monopoles coupled to isovector fermions

If we take the fermions in the adjoint representation then the index theorem (4.8)
predicts two zero modes for a charge one monopole. Besides a doubling of the number of
zero modes there is one other important difference from the isospinor case which involves
the spin carried by the fermion zero modes. This can be understood as follows. From
the discussion in sec. 2.1 we saw that the angular momentum generator for a symmetric
monopole is

K=L+S+T (4.20)

with L + S the sum of orbital and spin terms generating the usual rotation group and T
the SU(2) generators. That is, the SU(2) invariance group is a diagonal subgroup of the
usual rotation group SU(2)r and the gauge group SU(2)q.

Now isospinor fermions in the 2 of SU(2)¢ can have K = 0 since 2 x 2 =3 + 1 and

that is consistent with the fact that the zero modes (4.9) carry zero angular momentum as
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was implicitly assumed in the discussion in the previous section. But isovector fermions
in the 3 necessarily have K # 0 since they transform in the product 3 x 2 = 2 4 4. Since
the zero modes for adjoint fermions are two-fold degenerate but not four-fold degenerate

the only possibility is that they carry spin 1/2. Thus we can write

1 _1
Y = ag,1 /295 + ao,—1/2% * + non-zero modes (4.21)

where the +1/2 indicate the component of spin along say the z-axis. Following the previous
analysis we then have a four-fold degenerate spectrum consisting of the states shown below.

To simplify the notation I have dropped the zero subscript and written + instead of +1/2.

State S,
) 0
ak[) : (4.22)
all) -3
alal |Q) 0

So we see that by coupling adjoint fermions to monopoles we can give the monopoles
spin. Remembering that one of the original problems with the Montonen-Olive proposal
was the lack of monopole spin, this suggests that one way to cure the problem is to couple
the monopoles to fermions in such a way as to obtain spin one monopoles. We will see in
the next lecture that this is indeed possible.

We saw earlier that the bosonic collective coordinates of a single charge monopole, its
location and dyon degree of freedom, could be thought of as arising from symmetries of the
original Lagrangian which are broken by the monopole background (these symmetries are
not broken by the vacuum, just by the monopole background). Since we have also found
fermion zero modes or collective coordinates it is natural to wonder whether they can be
viewed in the same way. In supersymmetric theories the answer is yes, the fermion zero
modes (for charge one only) arise due to the supersymmetries which are unbroken in the
vacuum but are broken by the monopole background. This is discussed in the following

lecture.
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4.4. Ezercises for Lecture 4

E13. Find the unitary transformation which relates the gamma matrices used in this section
to your favorite choice of gamma matrices.

E14. For Ny Dirac fermions in the doublet of SU(2) we found Ny zero modes in a one
monopole background which led to creation and annihilation operators a, a(i)‘r’ 1=

1,2,--- Ny obeying the anticommutation relations

{a5,ap} = {ag ap'} = 0

o 3 (4.23)
{ah.aff) = o

a) Construct operators obeying the Lie algebra of SU(Ny) in terms of the af, and
il

b) Show that the monopole ground state has multiplicity 24, What representations
of SU(Ny¢) occur?

c¢) Show that one can in fact construct generators of SO(2Ny) in terms of the af)
and @l and that the previous SU(Ny) is embedded as SO(2Ny) D SU(Ny) with
2Ny — Ny+ Ny and that the monopole ground state transforms as the (reducible)
spinor representation of SO(2Ny) which decomposes as a sum of anti-symmetric

tensor representations
L (N
N § : /
27 — ( M) . (4.24)
M=0

For assistance with this problem see [43].
E15. Construct the two isovector fermion zero modes ¢3E Y2 for a charge one BPS monopole
by solving the Dirac equation in this background. Construct the operator K and verify

that the zero modes carry angular momentum +1/2. For assistance see [38].

5. Lecture 5
5.1. Monopoles in N = 2 Supersymmetric Gauge Theory

In this lecture we will be considering theories with either N = 2 or N = 4 spacetime
supersymmetries. Realistic (i.e. chiral) models of particle interactions have only N = 1
supersymmetry. There are theoretical reasons for discussing N = 2 and N = 4, the
main one being that the dynamics of these theories is under much better control and this

allows one to make statements about the spectrum which are valid non-perturbatively.
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One aspect of this which is discussed in the next section is the fact that the Bogomol'nyi
bound follows as a consequence of the supersymmetry algebra for N > 1. Related to this
is the fact that each supersymmetry relates field whose spin differs by 1/2. If we want all
the fields we have discussed so far, 4,1, ® with spins ranging from 1 to 0, to be related
by supersymmetry than we require at least N = 2 supersymmetry. Monopoles in N = 2
supersymmetric gauge theories were first discussed in detail in reference [44].

If we count bosonic and fermionic degrees of freedom for the Lagrangian given by the
sum of (3.13) and (4.1) (taking (®) = 0 for the moment ) we have 3 physical bosonic degrees
for each element of the adjoint representation of SU(2) (two from the gauge fields and one
from the Higgs field) and 4 fermionic degrees of freedom. Thus to have the possibility of
a supersymmetric spectrum we must add an additional boson to the theory. This can be
achieved by adding another Higgs field in the adjoint representation. This then gives the
field content of N = 2 Super Yang-Mills theory. The Lagrangian, in component form, is
given by

Ln—o = Tr( — %FWF‘“’ — 3(D,P)* - L(D,S)* - %[S, P)?

+ ZE’YMDMQ# - ea[sa ¢] - 6@75 [Pa ¢])
where all fields are written as elements of the Lie algebra of SU(2), i.e.S = S*T® etc. and S

(5.1)

and P are scalar Higgs fields. The Lagrangian (5.1) is invariant under the supersymmetry

transformations B
0A, =ioy, Y — i)y,o

6P = avys1) — Pysax
§S = ian) — iha
o = (UuyFw/ - DS+ ZJDP’% —i[P, S]vs)a

(5.2)

with « the Grassmann valued (Dirac) spinor supersymmetry parameter. Since the minimal
N = 1 supersymmetry has one Majorana parameter and a Dirac spinor is equivalent to
two Majorana spinors, (5.1) has N = 2 supersymmetry.

There is a potential term in the Lagrangian (5.1) but it has an exact flat direction
whenever [S, P] = 0. Also, as in the simpler Lagrangians we considered with V(®) = 0,
(5.2) is classically scale invariant and this scale invariance will be spontaneously broken by
having a non-zero expectation value for the scalar fields. This is enough to ensure that at
least classically there will be a massless Higgs field which is the dilaton of spontaneously

broken scale invariance.
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2 as r — oo thus

As before, we can impose as a boundary condition that S*S* — v
breaking the gauge symmetry from SU(2) down to U(1). It should also be clear that we
can trivially obtain a charge one BPS monopole solution in this theory using (2.1) with

®? replaced by S¢ ? so that we obtain a solution obeying the Bogomol’'nyi equation
B; = D;S (5.3)

Now following the earlier discussion we can ask whether this solution is invariant
under the action of supersymmetry. Since we are starting with a classical solution with the
fermion fields set to zero the supersymmetry variation of the bosonic fields is automatically

zero. The supersymmetry variation of the fermion field i for this background is

o = (oM F — PS)a (5.4)
Now using (5.3) and writing
1 0
we obtain
o) =v'B;(1 —Ts)a (5.6)

Thus if we decompose « in terms of a = (14T°)a/2 we see that the supersymmetries o,
are unbroken in the monopole background while the a_ supersymmetries are broken. The
variations (5.6) for the broken supersymmetries give zero energy Grassmann variations of
the monopole solution, that is they are zero modes of the Dirac equation in the monopole

background as can be seen by comparing (5.6) with the solution of Exercise E14.

5.2. The Bogomol’nyi Bound Revisited

Supersymmetry also gives important new insight into the Bogomol’nyi bound [45]. It
is somewhat easier to work with the two independent Majorana components of the super-
symmetry charge Q,; with « being a spinor index and ¢ = 1, 2 labeling the supersymmetry.

The N = 2 supersymmetry algebra then takes the form
{Quais Qp;} = 0ijh g Pu 4 0apUij + (5)apVij (5.7)

where U;; = —Uj; and V;; = —Vj; are central terms which commute with the rest of

the supersymmetry algebra. They can be evaluated in a specific theory by constructing

9 We can always choose P® = 0 by a chiral rotation
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the supercharges in terms of the underlying fields and then using the canonical (anti-
Jecommutation relations. The calculations are detailed but straightforward and in the

theory we are considering Witten and Olive found that
Uij = €i;vQe, Vij = €ij0Qm (5.8)

with (Qe, @) the electric and magnetic charge operators described previously.

It is then not hard to show that the supersymmetry algebra (5.7) implies the Bogo-
mol’nyi bound M > v\/m. For example consider the case @), = 0. In the rest
frame P, = (M, 0) the supersymmetry algebra has the form

{Qair Qpj} = 6ij0apM + veijyosQe (5.9)

The left hand side is positive definite while the second term on the right hand side has
eigenvalues +vQ).. We therefore conclude that M > v|Q.|.

It is clear from the above argument that the bound is saturated precisely when one
of the @Q.; is represented by zero, that is for states annihilated by at least one of the
supersymmetry operators. This gives a beautiful relation between partially unbroken su-
persymmetry and BPS saturated states. In fact, we can turn the argument around and
derive the Bogomol'nyi equation B = DS by demanding that half of the supersymmetries
(5.2) annihilate the monopole solution.

There is also a close connection between BPS saturated states and short represen-
tations of the N = 2 supersymmetry algebra. Roughly speaking what happens is the
following. A massive representation of the N = 2 supersymmetry algebra is constructed
by first going to the rest frame. The supersymmetry algebra then has the same form as
a Clifford algebra and one can view linear combinations of the supercharges as creation
and annihilation operators. The smallest representation of this algebra then has dimension
22N which is 16 for N = 2. On the other hand for massless representations one can go to
a null frame and in this frame one finds that half of the supersymmetry charges anticom-
mute to zero and are thus represented trivially. As a result representations have dimension
2NV = 4. Now the N = 2 multiplet we started with consisting of (4,1, S, P) has 8 states
and consists of two irreducible massless representations of N = 2. When we take into
account the Higgs mechanism some states eat others to get massive, but the total number

of states does not change. We thus have 8 massive states. But this seems to contradict
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the previous analysis. The resolution of this is that in constructing massive representa-
tions the anticommutator of supercharges involves a particular combination of the mass
and central charges Vio, Uio. For a special relation between the mass and central charges
these combinations vanish and one again must represent only 1/2 as many supercharges
non-trivially. This special relation if of course just the Bogomol'nyi bound. Further details
on representations of N = 2 and the role of central charges can be found for example in
[46].

5.83. Monopoles in N = 4 Supersymmetric Gauge Theory

The Super Yang-Mills theory with N = 2 supersymmetry we have been discussing so
far describes a single vector multiplet with physical fields (A,,, %, S, P). One can add to this
theory hypermultiplets in an arbitrary representation of the gauge group. Hypermultiplets
have a field content consisting of two Weyl fermions and four real scalars with quantum
numbers so that they are in a real representation of the gauge group. If we consider a theory
with one vector multiplet and one hypermultiplet, both in the adjoint representation of the
gauge group and write down all possible renormalizable coupling consistent with N = 2
supersymmetry then it is known that the resulting theory in fact has N = 4 supersymmetry.

Another more fundamental way to think about the N = 4 theory uses the notion of
dimensional reduction from a higher dimensional theory [47]. N = 1 supersymmetric Yang-
Mills theory with field content consisting only of gauge fields and their supersymmetric
gaugino partners is possible only in D = 3,4,6 and 10 spacetime dimensions. In order to
have the correct matching of physical degrees of freedom on must impose conditions of the
fermion fields and supersymmetries. In D = 3 dimensions the supersymmetry and fermion
fields must be Majorana, in D = 4 Majorana or Weyl, which are equivalent, in D = 6 Weyl
and there is no Majorana condition, and finally in D = 10 on must impose the Majorana
and Weyl conditions simultaneously.

Thus in ten dimensions we start with a spinor A in the adjoint representation of
some group G (which we choose to be SU(2) for simplicity) and obeying both a chirality

condition and Majorana condition:
(1+Ty)A=0, A=XC (5.10)

with C' the charge conjugation matrix. The N = 1 Lagrangian in ten dimensions with
A,B=0,1,2...9 is then

1 -
= Tr(—;FapF"” + %MADAA) (5.11)
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The dimensional reduction of this Lagrangian is carried out in detail in [38] specifically
for the purpose of analyzing the monopole spectrum and the details will not be repeated
here. However some general features should be pointed out. From a group theoretical point
of view the dimensional reduction reduces the Lorentz group via SO(9,1) D SO(3,1) x
SO(6). In the dimensional reduction we discard all dependence on six of the coordinates,
as a result the SO(6) part of the ten-dimensional Lorentz group will acts as a global
symmetry of the N = 4 theory. The gauge fields and fermion fields transform under this
reduction as 10 — (4,1) 4+ (1,6) and 16 — (24,44) + (2_,4_) respectively where the
subscript indicate the chirality. As a result the four-dimensional spectrum will consist of a
gauge field, six scalars @, in the 6 of SO(6) and four Weyl spinors \; transforming as a 4 of
SO(6) (or to be precise Spin(6) = SU(4) ). The resulting Lagrangian can be written in a
variety of forms, not all of which make the SO(6) symmetry manifest. Probably the most
elegant formalism uses the fact that the 6 of SU(4) arises in the antisymmetric product
(4 x 4) 4 to write the six scalar fields in terms of an antisymmetric complex matrix ®;;,
i,j = 1...4 obeying the condition (®;;)T = ®¥ = (1/2)e"*'®};. The Lagrangian is then

in two component form

1 i .
Lnzt =Tr(= 3 Fu F* +iXo DX + $D, @y D"
S ) . (5.12)
+ i, @]+ NN, @] + 1183, Pu][Y, M)

As in our discussion of the N = 2 theory, it is clear that the N = 4 theory is
classically scale invariant, that the potential has flat directions, and that we can give
expectation values to the scalars which will break the SU(2) gauge symmetry to U(1) and
spontaneously break scale invariance. For example a simple choice would be to take only
the field @15 to have a non-zero expectation value. We could then embed the BPS solution
into this theory by replacing the Higgs field ® in the BPS solution by ®15.

Giving a non-zero expectation value to ®12 not only breaks the SU(2) gauge symmetry
to U(1), it also breaks the classical scale invariance and also spontaneously breaks the
global SO(6) symmetry to SO(5). It is known that N = 4 Super Yang-Mills theory is
a finite theory with vanishing beta function and thus an exact quantum scale invariance.
The scalar spectrum after gauge symmetry breaking will therefor consist of one massless
scalar (the dilaton) which is the Nambu-Goldstone (NG) boson of spontaneously broken
scale invariance and five massless scalars which are the NG bosons of the spontaneously

broken SO(6) global symmetry.
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From (5.12) we see that the fermions have the standard Yukawa and gauge couplings
to the fields appearing in the BPS monopole solution. It should thus be clear that the
charge one BPS monopole embedded in the N = 4 theory has twice as many fermion zero
modes as we had for the pure N = 2 theory since there are now the equivalent of two
Dirac fermions (i.e. four Weyl fermions) in the adjoint representation of SU(2). Following
the discussion around (4.21) we will now have fermion zero modes in the one monopole
sector a(j,, /2With n = 1,2 labeling the two fermion fields. Dropping the zero subscript

and writing + for +1/2 as before the spectrum will then consist of the states

State S,
1€2) 0
ai’ly  +

nt mt
a”'all''|QY) 0

a1 519

+ O+
al T2ty 1
1T 21 nt 0 1
az az al'|Q) F3
aiTaiTaiTcﬁTSD 0

for a total of 16 states, 8 bosons, 6 with spin 0 and 2 with spin +1 and 8 fermions with spin
+1/2. This is the same as the content of the gauge super multiplet of N = 4 Yang-Mills
theory.

Thus in N = 4 gauge theory we finally see that it is possible to obtain monopoles of
spin one and in fact the monopole supermultiplet and the gauge supermultiplet are the
same in this theory. This in fact is not so surprising, there is a unique multiplet in N =4

gauge theory which does not contain spin greater than one.

5.4. Supersymmetric Quantum Mechanics on My,

We argued earlier that we can think of the fermion zero modes as Grassmann collective
coordinate for the monopole moduli space. In the absence of fermion fields the collective
coordinate expansion with background fields A%(z7, 2%(t)), ®(x7,2%(t)) leads to a low-
energy effective action by substituting into the four-dimensional action and integrating

over R3 to obtain

Seft = / AtGop2® P (5.14)
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with G the metric on the monopole moduli space. In other words, at very low energies the
field theory about the monopole background can excite only a finite number of degrees of
freedom, those that correspond to motion along the moduli space, and thus we can reduce
the dynamics to quantum mechanics.

We would like to add fermion zero modes to this picture. We can do this by also

expanding the fermion fields as
Y= Z Ao (t)wOa(xv Z) (515)

where the 1, are the fermion zero modes, treated as real numbers, and the A\, (t) are
Grassmann valued fermion collective coordinates. One can include these in the quantum
mechanical effective action by carrying out the same procedure as before. The details
are somewhat subtle however and will not be presented here. For details see [48] for the
analysis in N = 2 theories and [49] in N = 4 theories. However the answer is not surprising.
The quantum mechanical action is extended to the action for a supersymmetric quantum
mechanics. In the N = 2 case there are four real supersymmetries in spacetime which
are unbroken in the monopole background. As a result we expect an action with N = 4

world-line supersymmetry. This action is

Sepp=1 /dtgaﬁ(z%ﬁ + 4iXT" DyA) 4 const. (5.16)
where 5
d\® dz
DA = —— 4T% — )\ 5.17
¢ i (5.17)

is the covariant derivative acting on the spinor A\. The nomenclature for supersymmetry in
quantum mechanics is a bit confusing. Originally actions with two component spinors and
one supersymmetry were constructed and the supersymmetry was referred to as N = 1. It
was later realized that one could also have one supersymmetry with one component spinors
and this was unfortunately called N = 1/2 supersymmetry. With this nomenclature the
action (5.16) might be said to possess N = 4 x 1/2 supersymmetry. The presence of four
supersymmetries requires that the moduli space be a hyperkahler manifold. This means

M. has three complex structures J™ which obey

J§TE = —=556m" 4+ emmr gEY (5.18)
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and the action has N = 4 x 1/2 supersymmetry with supersymmetry transformations

02 =iBy\" + iBn N T

(5.19)
SAY = — 2By — B P T

The BPS monopole moduli space can be shown to be hyperkahler, independent of super-
symmetry [16], but to a physicist, supersymmetry provides the simplest explanation of this
fact.

If we choose one of the complex structures to introduce complex coordinates on My

then we have the canonical anti-commutation relations
(A%, AP} = 59 (5.20)

The \* therefore act as creation operators and we thus have a spectrum of states of the

form

fara, A% AT Q). (5.21)

These state are in one to one correspondence with holomorphic (0, p) forms on M
1f) = fayem, A7 A% Q) = fz,.5,d2™ A d2 (5.22)

In the reduction of N = 4 Super Yang-Mills theory one obtains a Lagrangian with

N =4 x 1 supersymmetry (twice as much supersymmetry as the N = 2 theory) given by
ca- — 1 —a —B
Supp =3 [ dtGus(22” + D) + GRas @@ ) (529

where now ¢* is a two-component spinor rather than a one-component object as in (5.16).
As a result of this doubling one now finds that the Hilbert space of states is the same as
the space of all differential forms on M, and that the Hamiltonian is the Laplacian acting

on forms. For further details of this correspondence see [50,51].

5.5. Ezercises for Lecture 5

E16. Verify that 6y = v*B;a_ is a zero-mode of the Dirac equation and that this agrees

with what you found in Exercise 12.
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E17. Construct the supercharges @, Q* for the theory described by (5.16). Show that with
the above correspondence between states and forms the supercharges and Hamiltonian
are given by

Q"< 0
Q=d (5.24)
H={Q,Q"}©00+00 = 1(dd' +dd)
where the latter equality uses the fact the My is Kahler. Thus the Hamiltonian is
just the Laplacian acting on forms.
E18. Show that the N = 2 Yang-Mills action (5.1) can be derived by dimensional reduction

of N =1 Yang-Mills theory in six spacetime dimensions.

6. Lecture 6
6.1. Implications of S-duality

It is time to take stock of where we are in the search for theories which may exhibit
an exact electromagnetic duality. We have seen that this cannot be the case in pure SO(3)
gauge theory or in N = 2 Yang-Mills theory because the monopole does not have spin
one and thus cannot be dual to the W boson . On the other hand in N = 4 Yang-Mills
theory there is only one supermultiplet which contains only spin < 1 and we have seen
that the monopoles and gauge bosons both lie in this supermultiplet.

In addition, although we will not discuss it in these lectures, quantum corrections in
N = 4 are under very precise control. In fact it is known that this theory has vanishing beta
function, both perturbatively and non-perturbatively. This ensures that the flat direction
in the potential we are utilizing remains in the full theory and that BPS states constructed
at weak coupling continue to exist and evolve smoothly to states at strong coupling.

We have thus addressed the first two objections to the Montonen-Olive proposal. We
are still faced with finding a non-trivial way to check the proposed duality without having
to compute directly at strong coupling. This is where the extension of duality to SL(2, Z)
plays a central role as was first appreciated by Sen. We will make one assumption, namely
that the state with (n.,n,,) = (1,0) (the W™ boson) exists at all values of the coupling T

10" This does not rule out a duality relating monopoles to fermion matter fields in N = 2 theories,
strong evidence for such a duality was found in [5] but a full discussion of this would lead us to
far afield.
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with a degeneracy of 16 corresponding to the 16 states in the short vector representation
of N = 4 supersymmetry. This is an extremely mild assumption. We have already argued
that the dimension of the representation cannot change as parameters of the theory are
varied and we know that such a state exists at weak coupling as a BPS saturated state.
The one known mechanism by which BPS saturated states can disappear requires that the
lattice spanned by the electric and magnetic charges degenerate at some value of 7 and in
this theory that is ruled out by the non-renormalization theorems.

Given the existence of the (1,0) state SL(2,7) duality requires the existence of all
the SL(2, Z) images of this state. Since a SL(2,Z) transformation acts on this state as

(é)é(i 2) (é):() (6.1)

duality requires the existence of states with (n.,n,,) = (a, c) with the same degeneracy of
16. Furthermore, since ad — bc = 1 it follows that a and ¢ are relatively prime, (a,c) = 1.
Also, by starting at a value of 7 corresponding to strong coupling and then performing
the duality transformation (6.1) these states must exist at weak coupling and thus should
appear in a semi-classical analysis of the spectrum.

For ¢ = 1 we require states (a, 1) for arbitrary integer a. These are just the dyonic
excitations of the single charge BPS monopole and from the previous analysis we see that
such states do exist with the correct multiplicity. Furthermore these states are BPS states
as is demonstrated in [48]. For ¢ = 2 we require states (a,2) with a odd, again with a
degeneracy of 16. Previous to Sen’s analysis such states were not known to exist.

Constructing these states in the full N = 4 supersymmetric field theory would be
very difficult. Luckily the question can be reduced to construction of bound states in the
moduli space approximation. To see why this is the case consider a bound state with
electric charge one. A BPS monopole state with (n.,,n,) = (0,1) has mass M) = vg
while a dyon state with charge (1,1) has mass My 1) = ’U\/m. A BPS bound state
of charge (2,1) on the other hand has mass M3 1) = v\/w . At weak coupling the
binding energy is thus

M(le) — M(l,l) — M(l,O) ~ U€(€/4g) << ve. (62)

Since this is much less than the W mass we should be able to study the existence of this
bound state in the moduli space approximation. The same argument applies to states of

greater electric charge at sufficiently weak coupling.
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In the following we will see how the existence of these states follows from a careful
analysis of supersymmetric quantum mechanics on My. Evidence for the existence of states
with arbitrary (a,c)=1 can be found in [52,53]. What about states with charges (0, n,,)
or (ne,0) 7 At weak coupling we know that there are no electric charge two bound states
in the spectrum, there are BPS states in the theory with charge (n.,0) but these are not
distinct from the multi particle continuum of states. Similarly, although there are charge
(0,n,,) monopoles, our analysis will show (for n,, = 2) that these are not normalizable
bound states of n,, single charge monopoles but just part of the continuum of states of

Ny single charge monopoles 1.

6.2. The Two-monopole Moduli Space From Afar

As we will see in the following section, the metric on the two-monopole moduli space
can be constructed exactly and the spectrum of supersymmetric quantum mechanics on
this space can thus be determined by explicit calculations. However instead of proceeding
directly to this analysis I would like to discuss briefly a description of the asymptotic
form of the two monopole moduli space due to Manton [55]. There are two reasons for
doing this. First, it brings out the physics of the moduli space in a direct way that
is not obscured by difficult mathematics or special functions. Second, this approximate
description has played a role in studies of the multi-monopole moduli space [56] and other
problems involving moduli spaces.

We begin with the fact that the BPS monopole has magnetic charge and dilaton
charge both equal to g with the definition of dilaton charge given in (2.11). At large
distances from the monopole we can summarize this fact by writing down a point like
interaction between the monopole and the photon and dilaton fields with equal strength
interactions. We begin with the interaction with the photon field. Instead of working with
the conventional vector potential A, as in the previous sections it is useful to introduce a

dual potential A* = ([10, /T) defined by F = dA in order to describe the field of a point

1 This is in distinction to the situation for fundamental strings or some string, D-brane con-
figurations where there are discrete states with multiple charge which should thought of as bound

states and distinguished from the multiparticle continuum [54].

49



monopole. We can then couple a point monopole of mass M to the photon by mimicking

the interaction of a electrically charged point particle 12:

S~:/dt<—M\/1—172—gflo+gU-;T>. (6.3)

When this is coupled to the electromagnetic action
S L [ pep, o U [ el pov
EM — _Z d*x N = _Z d*x v (64)

one finds as required that a monopole at rest at the origin gives rise to a Coulomb magnetic
field, and the action of this field on a second monopole gives rise to the standard Coulomb
repulsion between like sign monopoles. Now since the theory also includes a massless
dilaton field with action )

Sail = % / 4420, DO"D (6.5)

we must also include the coupling to the dilaton to obtain the correct force law. The
coupling to the dilaton is dictated by the fact that a shift of the dilaton is equivalent to
a shift in the mass of the monopole. This is the statement of spontaneously broken scale

invariance. We can thus generalize (6.3) to

Sip= /dt ((—M + D)1 — 72 — gA® + g7 - ?i) (6.6)

and now if we compute the net force between two stationary monopoles we find that the
Coulomb repulsion is precisely cancelled by the dilaton attraction.

Now we can ask what happens if the monopoles move relative to each other at low
velocities. At small velocities and at large impact parameter the interactions will still be
mediated by exchange of massless particles so the previous description should suffice. If
the first monopole is moving at velocity 7 << 1 a standard computation of the Lienard-
Wiechert potentials and dilaton field to first order in the velocity gives

Ao $7

A= ", (6.7)
D

4mr

12 The form of the action below is not manifestly covariant since it involves the time t as a
parameter rather than the proper time 7. It does of course lead to the correct covariant equations

of motion [57] and is more convenient for our purposes.
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with 7" the relative separation between the monopoles. If we now substitute these fields
into the Lagrangian for the second monopole and separate out the center of mass motion
we are left with an action which governs the relative motion of the two monopoles:
9 s o
S = [y = G (6.8)

The action (6.8) has no potential term, and a spatially varying kinetic term. We can
interpret it as saying that the relative motion is geodesic motion for a metric on R? given
by ds? = U(r)dr - di with U(r) = 1 — g?/(2mrMr). Note that so far everything we have
done could also have been done for a electrically charged W boson in this theory, the low
velocity motion of purely electrically or magnetically charged particles in this theory is
equivalent to geodesic motion. Physically, the forces due to photon and dilaton exchange
no longer cancel at non-zero velocity due to the different retardation effects for spin zero
and spin one exchange.

Now for monopoles there is a natural generalization of this result. We saw previously
that the classical single monopole moduli space has the form R3 x S! where the “velocity”
on the S' factor determines the dyons electrical charge. Thus to generalize the above
result to scattering of dyons we should include the electrical charge of the dyons and view
this as a velocity in some additional coordinate on S*. The analysis is slightly complicated
by the fact that one must use both A and A in the computation, but is essentially a
straightforward generalization of what we have done. In carrying out the computation
one should remember that the dilaton must couple to \/m since this is the mass of
the dyon from the BPS bound. The analysis is carried out in [55] with the result that
the relative motion of two dyons with electric and magnetic charges (e1, g1), (e2, g2) and
relative electric charge e = e5 — e; is given by

2 g g > 2
Srel:/dt(%—% %-%Jr%%-mr% (6.9)

where & is the Dirac monopole potential determined by Vxw=7 /r3. From the previous
discussion we would like to regard the electric charge e as the velocity along a S! governing
the relative charge of the two monopoles. If we call this fourth relative coordinate y with
e ~ x then the equations of motion following from (6.9) are equivalent to the equations

for geodesic motion in the metric
g2

ds?® = dF - dF + —2——
s =U(r)dr r+27rMU(r)

(dx + & - di)>. (6.10)
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The metric (6.10) is known in the relativity literature as the Taub-NUT metric with neg-
ative mass. From our derivation, we only expect it to agree with the exact metric on the
two monopole moduli space for monopole separations large compared to the inverse W

mass where the Dirac monopole approximation is valid.

6.3. The Fxact Two-monopole Moduli Space

Although the previous analysis gives a nice physical picture of the metric on the two
monopole moduli space at large separation, we need the full metric in order to provide
a precise test of duality. The exact two-monopole moduli space has been determined
by Atiyah and Hitchin using the fact that it has SO(3) isometry arising from rotational
invariance, the fact that in four dimensions hyperkahler implies self-dual curvature, and
the fact that the metric is known to be complete. This reduces the problem to an analysis
of specific differential equations which can then be solved in terms of elliptic functions.
Luckily we will not need to investigate the detailed form of the metric. A good reference
for what follows is [19].

The two monopole moduli space has the form
St x Mg)

7 (6.11)

./\/lg = R3 X (
where the R factor is the overall center of mass of the system and the S! factor de-
scribes the overall dyon rotator degree of freedom. The reduced moduli space M9 is
four-dimensional and when the two monopoles are far apart one can think of the coordi-
nate on MY as being the relative separation of the monopoles and the relative orientation

of the dyon degrees of freedom. Thus in this asymptotic region we have

1
X = 5(x1+ Xx2)
B i o (6.12)
X = 5(:131 + 582)

as coordinates on S x R? and
Y =10 —x2)
o (6.13)
T = 5(Z1 — 72)

as coordinates on MY with (Z1, x1) the collective coordinates of monopole one and similarly
for monopole two. The Z5 identification in (6.11) arises because a 27 rotation of one of the
dyon degrees of freedom leads to the same monopole configuration. Explicitly it is given
by the transformation

ILi: Yv—vYv+m, x—x+m. (6.14)
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The explicit metric on M3 is given by
ds® = f(r)%dr + a(r)®(oF)" +b(r)2(c)” + c(r)*(od)’ (6.15)

where the o; are left-invariant one-forms on SO(3) = S3/Z,'3. In one particular basis they

are given by
oft = —sinpdh + cos 1 sin fdg

ot = cospdf + sin 1 sin Od¢ (6.16)
ot = dip + cos Odg

with with 0 <0 <7, 0 < ¢ <27, 0 <Y < 27. The angles are further restricted under the
identification of the discrete right isometry [19]

(0,0, ) = (7 + ¢, — 0, —1)). (6.17)

Note that we can equivalently let the range of 1) be 0 < ¥ < 47 and then divide out by I.

We will follow [19] in choosing f(r) = —b(r)/r. The radial functions a(r), b(r) and
c¢(r) are given explicitly in [16]. Here we only need the asymptotic forms. Near r = 7 they
take the form

a(r):2<7«—7r){1—4i(r—7r>}+...

™

b(r):w{l-l—%(r—w)}-l—... (6.18)

1
c(r) :—7'('{1— —(T—?T)}+....
27
Introducing appropriate Euler angles, it can be shown that after the identification by I,

the metric is smooth near r = 7 and that r = 7 is an S? or bolt [19]. Near infinity, r — oo,

a(r):r(1—§>1/2+...

the functions take the form

b(r) =r (1 - %)1/2 ... (6.19)
=12

13 The metric (6.15) thus has SO(3) isometry since it is invariant under the (left) action of
SO(3). It may seem odd at first sight that the metric has SO(3) isometry is spite of having
different radial functions multiplying each of the terms in (6.15). However if all radial functions
were equal the metric would have SO(4) = SU(2) x SU(2) ~ SO(3) x SO(3) isometry given by
both the left and right actions of SO(3).
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where the neglected terms fall off exponentially with r. It can be shown that this asymp-

totic metric is equivalent to the Taub-NUT metric (6.10).

6.4. Duality and Sen’s Two-form

We now want to use the metric on the two monopole moduli space to partially test the
predictions of S duality following Sen’s original analysis. In particular, S duality predicts
the existence of BPS saturated bound states with magnetic charge 2 and odd electric
charge.

In the moduli space approximation BPS states are supersymmetric ground states, and
these in term correspond to harmonic forms on the moduli space as discussed at the end
of the previous lecture. The fact that we are looking for a bound state means that the
wave function or form on the relative moduli space must be normalizable, that is in L2.

In quantizing the theory on Mo we will obtain 16 fold degenerate states from the
wedge product of the 16 harmonic (constant) forms on R3 x S* with L? harmonic forms on
MY, S-duality predicts that we have precisely this degeneracy so it requires the existence
of a unique L? harmonic form on MY. Furthermore, for the corresponding states to have
odd electric charge this form must be odd under the Z5 action (6.14) . Now since the Hodge
dual of a harmonic form is also harmonic, it follows that we can get a unique harmonic
form only if the form is self-dual or anti-self-dual.

With this information it is then straightforward to write down the candidate form. It

is given by the ansatz

w=F(r)(dos — %d’r Noy). (6.20)
Note that this is anti-self-dual by construction. Demanding that w be harmonic yields the
equation
dF fa
—=—-—"—F 21
dr be (6.21)

An analysis of this equation at infinity and at the “bolt” shows that the form w is normal-
izable and well behaved at the bolt [2]. Furthermore this is the unique such form. This
thus establishes the existence of precisely the BPS bound states which are required by S
duality in the two monopole sector.

This analysis also shows that there are no such BPS bound states in N = 2 super
Yang-Mills theory without matter [51]. In the N = 2 theory supersymmetric ground states

are holomorphic forms on the moduli space, but the form (6.20) being anti-self-dual is a
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(1,1) form and thus not holomorphic. Of course in the N = 2 theory there was no reason
to expect such bound states since the theory is not S dual.

We have shown that such states exist mathematically, but one might wonder what
the physics is behind this result and whether there is some simple explanation why we
found bound states for N = 4 but not for N = 2. I believe the answer has to do with
spin dependent forces. Once the monopoles have spin there will be additional long range
forces (e.g. spin-orbit and spin-spin) besides those considered in Manton’s analysis of the
asymptotic moduli space. Depending on the magnitude of the spin these spin dependent
forces can lead to bound states which would not otherwise exist. So for example, without
supersymmetry, bound states of the basic Prasad-Sommerfield theory with vanishing po-
tential would correspond to L? harmonic functions rather than forms on the two monopole
moduli space and we have seen that these do not exist. With N = 2 supersymmetry
the absence of a four fermion term in the supersymmetric quantum mechanics indicates a
cancellation of the spin-spin forces between vector and scalar exchange. It is only when
we get to N = 4 supersymmetry and spin one monopoles that the spin dependent forces

can lead to new BPS saturated bound states.

6.5. Exercises for Lecture 6

E19. Analyze the asymptotic form of the two monopole moduli space given the asymptotic
formulae for a(r), b(r), c(r) and f(r). Show that the asymptotic metric can be put in
the from of the Taub-NUT metric (6.10).

E20. The following problem is an extended exercise in the geometry of the SU(2) group
manifold, a.k.a. S3. Parameterize the three sphere by Euler angles and write a general

SU(2) rotation as

(p+0) . =)
B CcoS gel 2 smge T2 (6-22)
- . (p—9) L (Y+e)
—smgeZ 2 cos ge T2

a) By expanding the one-form U~1dU in the basis i7;/2 with 7; the Pauli matrices
construct the left-invariant or “right” one-forms o*. Similarly, expand dUU ! to
obtain a set of right-invariant “left” one-forms oZ. The one-forms /""" are dual
to left (right) invariant vector fields ¢# (¢F) which generate right (left) group

actions.
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b) Construct explicitly the dual vector fields satisfying (€%, o) = §;; and (¢L, oF) =

i [

d;; and show that they are given by

R = —cot b cos Y0y — siny + (:;Sl;p&ﬁ
¢8 = —cot fsin Y0y + cos POy + Ssllrrlllgﬁ(/) (6.23)
€5 =y
and
b= (s:?z z&p + sin g0y + cot 6 cos 0,
¢k = lei‘gaw + cos ¢y — cot O sin PO, (6.24)
&5 = 0.
c) Show that the left and right invariant one forms satisfy the Maurer-Cartan equa-
tions 1
dolt = ieijkaf” Aoit
(6.25)
daiL = —§eijkajL A J,f.
and that the Lie brackets of the left and right vector fields are given by
€, &7 = —eijnéii
[&Lafg]‘:] = €ijkéF (6.26)
[, €71 = 0.

The last equation expresses the fact that the right (left) vector fields are left

(right) invariant.

7. Conclusions and Outlook

In these lectures we have developed some of the basic tools needed to study duality in

gauge theories with extended supersymmetry and have verified one non-trivial prediction

of S duality. Of course this is a far cry from having a complete understanding of duality

or even from testing it in a comprehensive way. At the time of writing this final section

(March 1996) duality has turned into an enormous enterprise which is changing the way

that we think about both field theory and string theory. I could not possibly summarize

the current situation or the open problems and any attempt to do so would be obsolete
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within weeks. Instead let me end by mentioning some of the progress and open problems

in the much more narrowly defined area of exact duality in N = 4 and finite N = 2 super

Yang-Mills theory which has been the end of the logical development of these lectures.

1.

There have been attempts to extend Sen’s result to the full set of dyons states required
by S duality [52,53] but my impression is that no completely convincing construction

yet exists.

. All of the current tests of duality are really tests of the BPS spectrum of states or

equivalently of states preserving half of the supersymmetry (this is true also of tests
relying on topological field theory constructions). Yet if there is exact duality then it
must relate all states and correlation functions including those at non-zero momentum.
So far we do not have the tools to explore duality in a dynamical setting. For one

partially successful attempt in this direction see [58].

. As mentioned at the end of lecture 4, finite N = 2 theories are also conjectured to

exhibit an exact duality symmetry. The simplest case involves gauge group SU(2)
with Ny = 4 hypermultiplets in the doublet representation of SU(2). Some of the

predictions of duality in this theory were explored in [6,7].

. In these lectures I have only considered duality with gauge group SU(2). For larger

gauge groups there are analogous predictions both for N = 4 Yang-Mills theory and
for N = 2 theories with vanishing beta function. There has been recent progress in

testing duality in these theories [59].

. Finally, the central question remains of why these theories exhibit duality. It many

cases it appears that duality in these theories is a low-energy manifestation of duality
symmetries in string theory. The origin of duality in string theory is still an unsolved

mystery.
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