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Exercise 53 (central tutorial)
In this exercise we will analyse another way of doing time-dependent perturbation theory, in which we will
use the interaction picture. Let’s consider a system with the Hamiltonian Ĥ = Ĥ0 + V̂ (t) where V̂ (t) is
small.

(i) How is the time-evolution operator in the interaction picture defined?

(ii) Show that the time-evolution operator in the interaction picture satisfies the integral equation

ÛI(t, ti) = 1− i

~

∫ t

ti

V̂I(t
′)ÛI(t, ti)dt

′ (1)

with initial conditions ÛI(ti, ti) = 1.

(iii) Show that solving this equation iteratively, one obtains the "Dyson series" :

ÛI(t, ti) = 1− i

~

∫ t

ti

V̂I(t
′)dt′ +

(
− i
~

)2 ∫ t

ti

V̂I(t1)dt1

∫ t1

ti

V̂I(t2)dt2 + ... (2)

(iv) Consider now the following situation. Suppose that for t < ti and t > tf , the system is described by
the free Hamiltonian which satisfies Ĥ0 |ψn〉 = En |ψn〉, and, for ti < t < tf the system is described by
the Hamiltonian Ĥ = Ĥ0 + V̂ (t). What is the probability that if the system was initially in the state
|ψn〉, it will be found in the state |ψm〉 with m 6= n, after a time interval T = tf − ti? Hint:

P (n→ m) =
∣∣∣〈ψm | ÛI(tf , ti) |ψn〉∣∣∣2 (3)

(v) Let now H0 be the Hamiltonian for a harmonic oscillator, and V̂ (q, t) = V0q̂
3e−t/τ where V0 is constant.

Calculate the probability for a transition from the ground state at ti = 0 to n’th excited state for
tf →∞. Hint: You may use the following integral∣∣∣∣∫ ∞

0

e−( 1
τ−inw)tdt

∣∣∣∣2 =
1

n2w2 + 1
τ2

(4)

Solution

(i) Let’s remember that the operators in the interaction picture are given by

ÂI = e
i
~ Ĥ0tÂe−

i
~ Ĥ0t (5)

Here Û0(t) = e−
i
~ Ĥ0t is the time-evolution operator corresponding to the free part of the Hamilto-

nian. Then we can define the time-evolution operator (corresponding to the full Hamiltonian)in the
interaction picture as

ÛI(t) = Û†0 (t, 0)Û(t, ti)Û0(ti, 0) (6)



(ii) Here we can follow same procedure as in problem sheet 6. The state in the interaction picture satisfies
the equation

i~
∂

∂t
|ψ(t)〉I = V̂I(t) |ψ(t)〉I (7)

If at a time ti, state vector was given by |ψ(ti)〉, at a later time, one can see that the state vector will
be given by

|ψ(t)〉I = ÛI(t, ti) |ψ(ti)〉I (8)

Substituting this in the previous relation, one obtains the equation for ÛI(t, ti):

i~
∂

∂t
ÛI(t, ti) = V̂I(t)ÛI(t, ti) (9)

from where the integral equation follows.

(iii) Just solve it iteratively, same as in PS6.

(iv) Plugging the expression for ÛI into the expression for probability, we find

P (n→ m) =

∣∣∣∣〈ψm |ψn〉 − i

~

∫ tf

ti

〈ψm | V̂I(t) |ψn〉 dt+ ...

∣∣∣∣2 (10)

Assuming that m 6= n, the first term vanishes. Using that V̂I(t) = Û†0 V̂ Û0, we obtain to the first order

P (n→ m) =

∣∣∣∣− i~
∫ tf

ti

〈ψm | V̂ (t) |ψn〉 e
i
~ (Em−En)tdt

∣∣∣∣2 (11)

(v)

P (0→ n) =
1

~2

∣∣∣∣∫ ∞
0

dt 〈n | V̂ (t) | 0〉 e i~ (En−E0)t

∣∣∣∣2 =
V 2
0

~2
∣∣〈n | q̂3 | 0〉∣∣2 ∣∣∣∣∫ ∞

0

dte
i
~ (En−E0)te−

t
τ

∣∣∣∣2 (12)

For the harmonic oscillator we have En = ~ω(n+ 1
2 ) and hence

e
i
~ (En−E0)te−

t
τ = e−(

1
τ−inω)t (13)

Furthermore, we can express the coordinate q̂ in terms of creation and annihilation operators as q̂ =√
~

2mω (â+ â†). Then we have

〈n | q̂3 | 0〉 =

(
~

2mω

) 3
2

〈n | â†
3

+ ââ†
2

+ â† | 0〉 (14)

Using that â† |n〉 =
√
n+ 1 |n〉, and â |n〉 =

√
n |n〉 we have

〈n | q̂3 | 0〉 =

(
~

2mω

) 3
2

(
√

6δn3 + 3δn1) (15)

From this we see that the only possible states where transition can take place are first and third excited
state within the first order in perturbation theory. The probabilities of the transition from ground state
to these states are given by

P (0→ 1) =
~

2mω

3 9V 2
0

(~ω)2 + ~2

τ2

(16)

P (0→ 3) =
~

2mω

3 6V 2
0

(3~ω)2 + ~2

τ2

(17)

Exercise 54 (central tutorial)

Let |φn〉 be the eigenstates of the unperturbed Hamiltonian Ĥ0 which has no degenerate eigenvalues. The
complete system shall be described by Ĥ = Ĥ0 + V̂ . The correction to a state can generally be written as∣∣ φ̄n〉 = |φn〉+

∑
l

c ln |φl〉 (18)

Calculate c ln , at first order in V̂ .



Solution First way
We know that: ∣∣ φ̄n〉 = |φn〉+

∑
l

c ln |φl〉 and
〈
φ̄m
∣∣ = 〈φm |+

∑
k

cmk
〈
φk
∣∣ (19)

It is not restrictive to set c nn = 0, since it is equivalent to a renormalization of the state. Furthermore from
the condition of the state to be normalized we get:

δmn =
〈
φ̄m | φ̄n

〉
= δmn + c mn + cmn +O(V 2) (20)

The equation must be satisfied order by order and taking m 6= n, it follows that:

c mn + cmn = 0 (21)

Considering again m 6= n it follows that:

0 =
〈
φ̄m
∣∣∣ Û(T )

∣∣∣ φ̄n〉 =
∑
α,β

〈
φ̄m |φα

〉 〈
φα
∣∣∣ Û(T )

∣∣∣φβ〉︸ ︷︷ ︸
λαβ

〈
φβ | φ̄n

〉
=
∑
α,β

(δmα + cmα)λαβ(δβn + c βn ) =

= λmn +
∑
α

cmαλ
α
n +

∑
β

c βn λ
m
β +O(V 2) =(0) λmn +(1) λmn +

∑
α

cmα
(0)λαn +

∑
β

c βn
(0)λmβ +O(V 2)

(22)

Recalling that
(0)λmn = δmn e

− i
~EnT , (23)

that we are considering m 6= n and that this must be true order by order, it holds:

(1)λmn + cmne
− i

~EnT + c mn e−
i
~EmT = 0 (24)

Using the condition of Equation 21, we find:

c mn = −
(1)λmn

e−
i
~EmT − e− i

~EnT
(25)

Using the result from the lecture for (1)λmn:

(1)λmn =
V mn

En − Em
(e−

i
~EnT − e− i

~EmT ) m 6= n (26)

we find
c mn =

V mn
En − Em

(27)

Therefore at first order the eigenstates of Ĥ are

∣∣ φ̄n〉 = |φn〉+
∑
l

c ln |φl〉 = |φn〉+
∑
l 6=n

V l n
En − El

|φl〉 (28)

Second way
Suppose that free and perturbed Hamiltonian satisfies respectively

Ĥ0 |φn〉 = En |φn〉 Ĥ
∣∣ φ̄n〉 = Ēn

∣∣ φ̄n〉 (29)

Let’s expand the perturbed eigenvalues and eigenvectors into unperturbed values together with corrections.
Then we have up to first order

Ēn = En + E(1)
n + ...∣∣ φ̄n〉 = |φn〉+
∣∣∣φ(1)n 〉+ ...

(30)

Inserting this into the eigenvalue equation for the perturbed Hamiltonian we obtain

Ĥ0 |φn〉 = En |φn〉

Ĥ0

∣∣∣φ(1)n 〉+ V̂ |φn〉 = En

∣∣∣φ(1)n 〉+ E(1)
n |φn〉

(31)



an so on...
Suppose we normalize

∣∣ φ̄n〉 such that
〈
φ̄n |φn

〉
= 1. Then all products between corrections and unperturbed

vector vanish for the same index n. Furthermore, since |φn〉 make complete and orthonormal basis, we can
expand the first correction in terms of them∣∣∣φ(1)n 〉 =

∑
m 6=n

〈
φm |φ(1)n

〉
|φm〉 (32)

Now by comparison with (18) one can see that
〈
φm |φ(1)n

〉
= c mn . We can determine this expression by

multiplying second relation in (31) with 〈φm |. Then we have

c mn =
V mn

En − Em
(33)

Exercise 55
The transition amplitude for the two level system is defined as in the lecture by

PT (a→ b) = |λ(1)ba |
2 =

1

~2

∣∣∣∣∣
∫ T

0

dtIVba(tI)e
iωbatI

∣∣∣∣∣
2

(34)

where
Vba(tI) =

∫
dqIψ

∗
b (qI)V (qI , tI)ψa(qI) and ωba =

Eb − Ea
~

(35)

is the matrix between the eigenstates of the energy levels. Show that

PT (a→ b) = PT (b→ a) (36)

Solution It follows directly by switching a with b and complexly conjugating the expression.

Exercise 56
Prove that

lim
T→∞

sin 2(αT )

πα2T
= δ(α) (37)

Hint: you may find useful the following result,
∫
R
dx sin 2(x)

x2 = π.

Solution To prove it let’s take a test function f(α) and consider the following integral:

lim
T→∞

∫
R

dα
sin 2(αT )

πα2T
f(α)

αT=x
=

∫
R

dx lim
T→∞

sin 2(x)

πx2
f
( x
T

)
=
f(0)

π

∫
R

dx
sin 2(x)

x2︸ ︷︷ ︸
π

=

= f(0)

(38)

Since the δ−function is defined through
∫
R
dα δ(α)f(α) = f(0), we can conclude that:

lim
T→∞

sin 2(αT )

πα2T
= δ(α) (39)

Exercise 57
Show for an isotropic stochastic electromagnetic field, that〈

| ~E|2
〉

= 3
〈
E2
z

〉
. (40)



Solution The solution is presented in two ways.

The first one is more intuitive and relies on the fact that the expectation value of the square of the field
in one direction must be equal, due to the the spherical symmetry of the problem, to the one in any other
direction, i.e.

〈
E2
x

〉
=
〈
E2
y

〉
=
〈
E2
z

〉
. Thus,〈
| ~E|2

〉
=
〈
E2
x

〉
+
〈
E2
y

〉
+
〈
E2
z

〉
= 3

〈
E2
z

〉
(41)

The second way is more formal. Let’s try to calculate the expectation value of | ~E2| explicitly. Since the field
is stochastic the system has a natural spherical symmetry and the probability distribution will be given by
ρ(~x) = ρ(|~x|).

〈
| ~E|2

〉
=

∫
R3

d3xρ(~x)| ~E(~x)|2 =

∫
R3

d3xρ(|~x|)| ~E(|~x|)|2 =

π∫
0

dθ sin (θ)

2π∫
0

dφ

∞∫
0

dr r2ρ(r)| ~E(r)|2

︸ ︷︷ ︸
R

=

=

π∫
0

dθ sin (θ)R = 2R

(42)

In the same way we can calculate the expectation value for the z-direction.〈
E2
z

〉
=

∫
R3

d3xρ(|~x|)|Ez(|~x|)|2 =

∫
R3

d3xρ(|~x|)| ~E(|~x|) · n̂z|2 =

∫
R3

d3xρ(|~x|)| ~E(|~x|) cos (θ)|2 =

=

π∫
0

dθ sin (θ) cos (θ)
2

︸ ︷︷ ︸
2/3

2π∫
0

dφ

∞∫
0

dr r2ρ(r)| ~E(r)|2

︸ ︷︷ ︸
R

=
2

3
R

(43)

And thus, 〈
| ~E|2

〉
〈E2

z 〉
= 3. (44)

General information
The lecture takes place on:

Monday at 10:00 - 12:00 c.t. in B 052 (Theresienstraße 37)
Friday at 10:00 - 12:00 c.t. in B 052 (Theresienstraße 37)

The central tutorial takes place on Monday at 12:00 - 14:00 c.t. in B 139 (Theresienstraße 37)
The webpage for the lecture and exercises can be found at

https://www.physik.uni-muenchen.de/lehre/vorlesungen/wise_19_20/T_M1_TV_-Quantum-Mechanics-II


