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Exercise 43

Consider the Lagrangian for a driven harmonic oscillator in one dimension

L(q, q̇, J(t)) =
mq̇2

2
− mω2

2
q2 + J(t)q, (1)

with ω being a constant and J(t) being a time dependent driving force.

(i) Derive expressions for the conjugate momentum p and the Hamiltonian H of the system.

We now quantize the system by promoting q and p to operators q̂ and p̂, respectively. These operators satisfy
the usual commutation relation.

(ii) Write the Hamiltonian in terms of creation and annihilation operators â and â†.
Hint: Recall your results from Question 22.

(iii) Find the equations of motion for the the operators â and â†, respectively. They should have the form

d ŷ(t)

dt
+A(t)ŷ(t) = B(t),

where y(t) represents â(t) or â†(t).

(iv) Assuming the driving force satis�es J(t < 0) = 0, solve the equations of motion.
You may assume that the solution has the form

y(t) = (C0 + C(t)) exp

(
−
∫
A(t)dt

)
,

�nd C(t) and then �x C0 with the boundary condition at t = 0 arising from J(t < 0) = 0.
Remark: The general form of the solution can be derived using the method of variation of constants.

Given that the operators â and â† act on the �n-particle� state |n〉 as

â |n〉 =
√
n |n− 1〉 and â† |n〉 =

√
n+ 1 |n+ 1〉 , (2)

we can de�ne a number operator N̂ = â†â such that N̂ |n〉 = n |n〉.

(v) Find the vacuum expectation value of the number operator,
〈

0
∣∣∣ N̂ ∣∣∣ 0〉, where the vacuum is de�ned

by â0 | 0〉 = 0 and â0 is the annihilation operator of the free harmonic oscillator. Comment on your
result.

Solution

(i) Using the de�nition of conjugate momentum we �nd

p =
dL

dq̇
= mq̇.

And the Hamiltonian is

H(q, p, J(t)) = [q̇p− L(q, q̇, J(t))]q̇=p

=
p2

2m
+
mω2

2
q2 − J(t)q.



(ii) De�ning creation and annihilation operators as,

â† =

√
mω

2~

(
q̂ − i

mω
p̂

)
â =

√
mω

2~

(
q̂ +

i

mω
p̂

)
,

we know from Question 22 that we can write the free Hamiltonian as

Ĥ0 =
p̂2

2m
+
mω2

2
q̂2 =

~ω
2

(
â†â+ ââ†

)
= ~ω

(
â†â+ 1

2

)
.

Using the fact that q̂ =
√

~
2mω

(
â+ â†

)
, we �nd

Ĥ = ~ω
(
â†â+ 1

2

)
−
√

~
2mω

(
â+ â†

)
J(t). (3)

(iii) Using the Heisenberg equation of motion

d â

dt
=
i

~

[
Ĥ, â

]
= iω

[
â†, â

]
â− i√

2~mω
[
â†, â

]
J(t)

= −iωâ+
i√

2~mω
J(t),

where we used that
[
â, â†

]
= 1. Therefore

d â

dt
= −iωâ+

i√
2~mω

J(t),
d â†

dt
= iωâ† − i√

2~mω
J(t) (4)

where we found the equation of motion for â† by complex conjugation.

(iv) Using the hint that the solution of Eq. 4 for â has the form

â(t) = (Ĉ0 + Ĉ(t)) exp (−iωt).

where A(t) = iω, we can substitute into Eq. 4 to �nd,

−iωâ+
i√

2~mω
J(t) = −iω(Ĉ0 + Ĉ(t)) exp (−iωt) +

d Ĉ(t)

dt
exp (−iωt)

= −iωâ+
d Ĉ(t)

dt
exp (−iωt).

Therefore,

d Ĉ(t)

dt
=

i√
2~mω

J(t) exp (iωt) =⇒ Ĉ(t) =
i√

2~mω

∫ t

0

dt′ J(t′) exp (iωt′),

where we used that J(t < 0) = 0. Hence we have

â(t) =

(
Ĉ0 +

i√
2~mω

∫ t

0

dt′ J(t′)eiωt
′
)
e−iωt. (5)

We can �x the constant Ĉ0 by matching solution, Eq. 5, to the one of a free harmonic oscillator at
t = 0 with â0 and â†0. Also, by conjugation we can �nd the solution for â†(t). Finally, we arrive at

â(t) =

(
â0 +

i√
2~mω

∫ t

0

dt′ J(t′)eiωt
′
)
e−iωt

â†(t) =

(
â†0 −

i√
2~mω

∫ t

0

dt′ J(t′)e−iωt
′
)
eiωt

(6)



(v) Using that â0 | 0〉 = 0 and 〈0 | â†0 = 0, we immediately have

〈
0
∣∣∣ N̂(t)

∣∣∣ 0〉 =

〈
0

∣∣∣∣∣ 1

2~mω

∣∣∣∣∫ t

0

dt′ J(t′)eiωt
′
∣∣∣∣2
∣∣∣∣∣ 0
〉

=
1

2~mω

∣∣∣∣∫ t

0

dt′ J(t′)eiωt
′
∣∣∣∣2 ≥ 0.

We can interpret this result as excitation of the harmonic oscillator by the energy supplied from the
driving force.
If we interpret the state |n〉 as a �n-particle�-state, the driving force would supply energy to create
particles.

Exercise 44

(i) Prove the following n-dimensional Gaussian integration formula:

I =

∫
Rn

exp

[
−1

2
xTAx+ bTx+ c

]
dnx =

√
(2π)n

detA
exp

[
1

2
bTA−1b+ c

]
. (7)

Here A is a symmetric positive de�nite n× n matrix.

(ii) Show that the argument of the exponential in the result is the extremal value of the exponent in the
integrand.

Solution

(i) First of all, since A is positive de�nite, it is invertible so we may change the integration variable to
y = x−A−1b. The Jacobian of this transformation is 1 so the integral becomes

I =

∫
Rn

exp

[
−1

2
yTAy +

1

2
bTA−1b+ c

]
dny = exp

[
1

2
bTA−1b+ c

]
×
∫
Rn

exp

[
−1

2
yTAy

]
dny. (8)

The remaining integral can be reduced to one-dimensional case by an orthogonal transformation:
any symmetric positive-de�nite matrix A can be diagonalized by an orthogonal transformation O
(with determinant 1) such that A = OTDO where D is a diagonal matrix with positive diagonal
elements. Using this and changing the integration variable from y to z = Oy (the determinant of this
transformation is +1) we see that

I = exp

[
1

2
bTA−1b+ c

]
×
∫
Rn

exp

[
−1

2
zTDz

]
dnz (9)

= exp

[
1

2
bTA−1b+ c

]
×

n∏
j=1

∫
R

exp

[
−1

2
djz

2
j

]
dzj (10)

= exp

[
1

2
bTA−1b+ c

]
×

n∏
j=1

√
2π

dj
(11)

=

√
(2π)n

detA
exp

[
1

2
bTA−1b+ c

]
. (12)

(ii) We �nd the extremal value of the exponent in the integrand by �rst �nding the extremum,

0 = ∇x
[
−1

2
xTAx+ bTx+ c

]
= −Ax+ b (13)

so the extremal point is at x0 = A−1b. Plugging this back into the exponent (action), we �nd

−1

2
xT0 Ax0 + bTx0 + c =

1

2
bTA−1b+ c (14)

which is exactly the exponent of the result.



Exercise 45 (central tutorial)

In this problem we will evaluate the propagator of the harmonic oscillator using the path integral. The
Lagrangian is

L =
1

2
mq̇(t)2 − 1

2
mω2q(t)2

and the path integral that we are going to compute is

K(qF , T ; qI , 0) =

∫
q(0)=qI
q(T )=qF

Dq(t) exp

[
i

~

∫ T

0

dt

(
1

2
mq̇(t)2 − 1

2
mω2q(t)2

)]
. (15)

The �nal answer that we should �nd is

K(qF , T ; qI , 0) =

√
mω

2πi~ sinωT
exp

[
imω

2~ sinωT

(
(q2
I + q2

F ) cosωT − 2qIqF
)]
. (16)

We will work directly in the continuum limit, integrating over all paths. The main fact that we are going
to use is that for harmonic oscillator the integral (15) is Gaussian (exponential of a quadratic function of
integration variables), so that we will be able to use the continuous generalization of the Gaussian integration
formula (see Exercise 44)∫

Rn

dnx exp

[
−1

2
xTAx+ bTx+ c

]
=

√
(2π)n

detA
exp

[
1

2
bTA−1b+ c

]
valid for A a positive de�nite symmetric matrix A and b an arbitrary real vector. In our continuum compu-
tation we will have to determine the analogue of the exponential factor on the right hand side and of the
determinant detA.

(i) To determine the stationary point, �nd the stationary path q0(t) of the action (there will be only one),
i.e. solve the classical Euler-Lagrange equations with boundary conditions q(0) = qI and q(T ) = qF .
You should get

q0(t) =
1

sinωT
(qF sinωt+ qI sinω(T − t))

The result is singular for ωT = πn, n ∈ N - explain the origin of these singularities.

(ii) Evaluate the classical action at the stationary point. The result should reproduce the exponential factor
of the �nal result (16).

(iii) It remains to evaluate the prefactor, in particular we should understand a continuous generalization
of the determinant detA. This determinant comes from integrating over the quadratic �uctuations
around the stationary path. We make a shift of the integration variable

q(t) = q0(t) + δq(t).

where q0(t) is the stationary point found previously and δq now satis�es the boundary conditions
δq(0) = 0 = δq(T ). Why? What is the Jacobian of this change of integration variable? Show that the
action is now

S[q(t)] = S[q0(t)]− m

2

∫ T

0

δq(t)
[
∂2
t + ω2

]
δq(t)

(why there is no term linear in δq?) so that we need to �nd the determinant of the operator

Aω = −∂2
t − ω2 (17)

acting in the space of functions which satisfy δq(0) = 0 = δq(T ).

(iv) Find the eigenfunctions and eigenvalues of (17). The determinant should be their product. Show that
this is formally

detAω =

∞∏
k=1

(
π2k2

T 2
− ω2

)
which is divergent as k →∞. But the ratio of these two formal expressions at di�erent values of ω is
convergent. Using the product formula for the sine function

sinπz

πz
=
∏
n>0

(
1− z2

n2

)



show that

det(Aω) =
Ω det(AΩ)

sin ΩT

sinωT

ω
.

(v) In this way, we evaluated the functional integral (15) up to an ω-independent prefactor. Fix this
prefactor by comparing the ω → 0 limit of the result to the free particle propagator

Kfree(qF , T ; qI , 0) =

√
m

2πi~T
exp

[
−m(qF − qI)2

2i~T

]
The result you should �nd is (16).

Solution

(i) First of all we need to �nd the saddle points - the classical extrema of the action. The Euler-Lagrange
equations tell us that we must �nd the solutions of ordinary di�erential equation

q̈(t) + ω2q(t) = 0

with boundary conditions q(0) = qI and q(T ) = qF . The general solution satisfying these boundary
conditions is

q0(t) =
1

sinωT
(qI sinω(T − t) + qF sinωt) .

[If we wrote the solution as a combination q0(t) = a sin(ωt)+b cos(ωt) the boundary condition determine

b = qI and a = qF−qI cos(ωT )
sinωT ]. There can be a problem with this solution whenever ωT = πn, n ∈ N.

There is a physical reason for this singularity: we are not solving an initial value problem with prescibed
position and velocity at the initial time, but instead a boundary problem �xing the position of the
particle at initial and �nal time. In this case the exisitence of solutions is not guaranteed. Indeed,
because of the periodicity of classical solutions of the equations of motion, we know that after the
period 2π/ω the position of particle is always same as the initial position, no matter what initial
velocity we choose, and after half-integer multiple of the period the particle is at the opposite position.
This is the physical origin of the poles in the solution.

(ii) Now we evaluate the classical action at the solution that we found. The classical Lagrangian is

L(q0(t), q̇0(t)) =
m

2
q̇2
0(t)− mω2

2
q2
0(t)

=
mω2

2 sin2(ωT )

[
q2
I cos2(ω(T − t)) + q2

F cos2(ωt)− 2qIqF cos(ωt) cos(ω(T − t))

− q2
I sin2(ω(T − t))− q2

F sin2(ωt)− 2qIqF sin(ωt) sin(ω(T − t))
]

=
mω2

2 sin2 ωT

(
q2
F cos(2ωt) + q2

I cos 2ω(T − t)− 2qIqF cos(ω(T − 2t))
)

To go to the second line we used

q̇0(t) =
ω

sin(ωT )
[−qI cos(ω(T − t)) + qF cos(ωt)] . (18)

Integrating this over time, we �nd for the classical action

S[q0(t)] =
mω

2 sinωT

(
(q2
I + q2

F ) cosωT − 2qIqF
)
.

We used the integrals ∫ T

0

cos(2ωt)dt =

∫ T

0

cos(2ω(T − t))dt =
sin(2ωT )

2ω

and ∫ T

0

cos(ω(T − 2t))dt =
sin(ωT )

ω
.



(iii) It remains to compute the determinant prefactor (the one-loop determinant). In order to do this, we
need to integrate over the quadratic �uctuations around the classical trajectory. Expanding the action
to the quadratic order around q(t)

S[q0(t) + δq(t)] = S[q0(t)] +
1

2

∫
dt

∫
dt′

δ2S[q(t)]

δq(t)δq(t′)

∣∣∣
q→q0

δq(t)δq(t′) + . . .

Note that the �rst term vanishes because q0(t) extremizes the action. In our case the action is quadratic
so the three dots are actually zero.

More explicitly, plugging in q(t) = q0(t) + δq(t) we �nd

S[q0(t) + δq(t)] = S[q0(t)]− m

2

∫ T

0

δq(t)
[
∂2
t + ω2

]
δq(t)

So we need to compute the determinant of operator

−∂2
t − ω2 (19)

in the space of functions δq(t) satisfying the boundary conditions δq(0) = 0 = δq(T ) (this comes from
the fact that from the beginning we were evaluating the Feynman path integral over trajectories with
�xed end points).

(iv) The eigenfunctions of the operator (19) are easily found to be

fk(t) = sin
πkt

T

where k = 1, 2, . . . with corresponding eigenvalues

λk =
π2k2

T 2
− ω2

This means that the determinant we are after is

det(Aω) ∼
∞∏
k=1

(
ω2 − π2k2

T 2

)
(20)

This product diverges for large values of k. It makes sense, however, to compare the ratio of these
determinants for di�erent values of ω,

det(Aω)

det(AΩ)
=

∞∏
k=1

ω2 − π2k2

T 2

Ω2 − π2k2

T 2

In this way, we can understand the ω-dependence of the determinant, although we cannot �x the overall
prefactor. Using now the product formula for the sine function

sinπz

πz
=
∏
n>0

(
1− z2

n2

)
we �nd

det(Aω) =
Ω detAΩ

sin ΩT

sinωT

ω

(v) Combining the result of the classical action and of the determinant, we �nd that

K(qF , T ; qI , 0) ∼
√

ω

sinωT
exp

[
imω

2~ sinωT

(
(q2
I + q2

F ) cosωT − 2qIqF
)]
. (21)

To �x the normalization constant, we compare this and the result for the free particle propagator,

Kfree(qF , T ; qI , 0) =

√
m

2πi~T
exp

[
−m(qF − qI)2

2i~T

]
which is the ω → 0 limit of the harmonic oscillator. Comapring this with (21) we �nd the �nal answer

K(qF , T ; qI , 0) =

√
mω

2πi~ sinωT
exp

[
imω

2~ sinωT

(
(q2
I + q2

F ) cosωT − 2qIqF
)]
.



Exercise 46

There is another way to determine the prefactor of the harmonic oscillator propagator using the property of
composition of two propagators

K(qF , T1 + T2, qI , 0) =

∫ +∞

−∞
K(qF , T1 + T2, q, T1)K(q, T1, qI , 0)dq. (22)

Parametrize the propagator of the harmonic oscillator as

K(qf , T, qI , 0) = A(T ) exp

[
imω

2~ sin(ωT )

(
(q2
I + q2

F ) cos(ωT )− 2qIqF
)]

(23)

and show that the composition property implies an equation for the prefactor

A(T1 + T2) = A(T1)A(T2)

√
2πi~ sin(ωT1) sin(ωT2)

mω sin(ω(T1 + T2))
(24)

which determines the prefactor to be

A(T ) =

√
mω

2πi~ sin(ωT )
. (25)

Solution We need to evaluate the one-dimensional integral∫ +∞

−∞
dqA(T1)A(T2) exp

[
imω

2~ sin(ωT1)

(
(q2
I + q2) cos(ωT1)− 2qIq

)]
×

× exp

[
imω

2~ sin(ωT2)

(
(q2
F + q2) cos(ωT2)− 2qF q

)]
. (26)

This is a Gaussian integral with

a =
−imω

~

(
cos(ωT1)

sin(ωT1)
+

cos(ωT2)

sin(ωT2)

)
=
−imω

~
sin(ω(T1 + T2))

sin(ωT1) sin(ωT2)
(27)

b = − iqImω

~ sin(ωT1)
− iqFmω

~ sin(ωT2)
(28)

c =
imω

2~

(
q2
I cos(ωT1)

sin(ωT1)
+
q2
F cos(ωT2)

sin(ωT2)

)
. (29)

We can concentrate on the prefactor (the classical action in the exponent will give us the correct expression
that we already know). From the Gaussian integration formula the prefactor of the result depends only on
a and is equal to

A(T1)A(T2)

√
2π

a
= A(T1)A(T2)

√
2πi~ sin(ωT1) sin(ωT2)

mω sin(ω(T1 + T2))
. (30)

which should be equal to A(T1 + T2) and this is the relation we wanted.

Exercise 47 (central tutorial)

In this problem we want to extract wave functions and energies of the harmonic oscillator from the propagator
that we calculated using the path integral.

(i) Find the Euclidean propagator (unnormalized density matrix) of the harmonic oscillator by analytic
continuation T → −i~β where β is the inverse temperature.

(ii) What is the leading order low temperature behavior as β →∞? It is convenient to introduce a variable
α = e−~βω such that α→ 0 as β →∞.

At this point, the Euclidean propagator expressed in terms of α should look like

K(qF ,−i~β, qI , 0) = α
1
2

√
mω

~π(1− α2)
exp

[
− mω

~(1− α2)

(
(q2
I + q2

F )
1 + α2

2
− 2qIqFα

)]
. (31)



(iii) Read o� the spectrum of the Hamiltonian from the expression for the propagator you just found. The
(unnormalized) density matrix should have an expansion of the form

K(qF ,−i~β, qI , 0) =

∞∑
n=0

α
1
2 +nfn(qF , qI). (32)

Interpret the quantities fn(qF , qI) in terms of eigenfunctions of the Hamiltonian.

(iv) For one-dimensional quantum mechanical problems with discrete spectrum the wave functions can be
chosen to be real. Detemine the ground state wave function from the leading order coe�cient of K as
β →∞.

(v) Determine the wave function of the �rst excited state.

(vi) Show that for the harmonic oscillator we have in general

ϕn(qF )ϕ∗n(qI) = lim
β→∞

1

n!

(
− 1

~ω
e~ωβ

d

dβ

)n [
e

1
2~ωβK(qF ,−i~β, qI , 0)

]
. (33)

Solution

(i) We start with the propagator K(qF , T, qI , 0) evaluated above and replace T → −i~β. The result is

K(qF ,−i~β, qI , 0) =

√
mω

2π~ sinh(~ωβ)
exp

[
− mω

2~ sinh(~βω)

(
(q2
I + q2

F ) cosh(~βω)− 2qIqF
)]
. (34)

where we used the formula sin(ix) = i sinh(x).

(ii) Introducing the variable α as suggested, the Euclidean propagator takes the form

K(qF ,−i~β, qI , 0) = α
1
2

√
mω

~π(1− α2)
exp

[
− mω

~(1− α2)

(
(q2
I + q2

F )
1 + α2

2
− 2qIqFα

)]
. (35)

(iii) The prefactor α
1
2 controls the leading order behavior at low temperatures (corresponding to the con-

tribution of the ground state) while the rest can be Taylor expanded in positive powers of α. This
means that the right-hand side has a Taylor expansion of the form

∞∑
n=0

fn(qF , qI)α
1
2 +n =

∞∑
n=0

fn(qF , qI)e
−β~ω( 1

2 +n) =

∞∑
n=0

fn(qF , qI)e
−βEn (36)

which corresponds to the well-known energy spectrum En = ~ω
(

1
2 + n

)
. Inserting the complete set of

states in the de�nition of the Euclidean propagator we �nd a general expression

K(qF ,−i~β, qI , 0) =

∞∑
n=0

〈qF |n〉 e−βEn 〈n | qI〉 =

∞∑
n=0

e−βEnϕn(qF )ϕ∗n(qI) (37)

so the expressions fn(qF , qI) are just the matrix elements of projectors on eigenfunctions, i.e. fn(qF , qI) =
〈qF |n〉 〈n | qI〉 which in terms of wave functions is just ϕn(qF )ϕ∗n(qI).

(iv) We can extract the leading order coe�cient by putting α = 0 everywhere except for the prefactor α
1
2 .

We thus �nd

ϕ0(qF )ϕ∗0(qI) =

√
mω

~π
exp

[
−mω

2~
(q2
I + q2

F )
]

(38)

and from here we can read o� the ground state wave function to be

ϕ0(q) =
(mω
~π

) 1
4

exp
[
−mω

2~
q2
]

(39)

which is indeed the well-known result.

(v) To �nd the information about the �rst excited state with energy E1 = 3~ω
2 , we know from the previous

questions that the wave function can be obtained by expanding the function in (35) to �rst order in
α. Fortunately, for this calculation we can ignore all α2 terms and we �nd simply

ϕ1(qF )ϕ∗1(qI) =

√
mω

~π
exp

[
−mω

~

(
q2
I + q2

F

2

)]
2mωqIqF

~
= ϕ0(qF )ϕ∗0(qI)

2mωqIqF
~

. (40)



(vi) From the expression for the density matrix (36) we see that the wave functions can be calculated as

ϕn(qF )ϕ∗n(qI) =
1

n!

dn

dαn

∣∣∣
α=0

[
α−

1
2K(qF ,−i~β, qI , 0)

]
(41)

Changing the variable from α to β = − 1
~ω logα we can write this as

ϕn(qF )ϕ∗n(qI) = lim
β→∞

1

n!

(
− 1

~ω
e~ωβ

d

dβ

)n [
e

1
2~ωβK(qF ,−i~β, qI , 0)

]
. (42)


