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Exercise 9 (central tutorial)

(i) Show that if AB =1 = C'A then we have
B=A1=C.
Remember that the inverse operator A~ satisfies [¢)) = A |x) if and only if |y) = A= |1)).
(ii) Given an example of operators A and B in Hilbert space for which AB = 1 holds but for which
BA # 1.
(iii) Let A be an operator such that A2 = A1 where A # 1 is a complex number. Write (fl + ]1) B explicitly

in terms of A.

Solution

(i) To prove that B = C' we can multiply the first equation by C from the left:
¢ EAR) = (cA)B 2 Bl

To show that B=C is the inverse operator to A, we first assume that |[¢)) = A|x) and act on this
with C' and find |x) = C'[¢)) which shows one direction of the equivalence. The other direction can be
shown analogously by acting with B.

(i) We can consider a rescaled version of ladder operator in the harmonic oscillator. Remember that there
we have an orthonormal basis of states |n) where n = 0,1,2,... and creation and annihilation operator
which act as

i) =vantijn+1l), an)=valn—1).

Consider now modified ladder operators such that
bt n) = |n+1)

and

B|n>:{|n—1>, n>0
0, n=>0

We can now choose A = b and B = bi. Acting on any basis state we find
ABn) =bb' [n) =b|n+1) = |n)
so AB = 1 but acting on the ground state |0) we have
BA0) =b'b[0) =0

so A and B are not inverse of each other.



(iii) Since A squares to something proportional to identity, any function of A that can be written as power
series in A can be reduced to the form A
al + BA.

Let’s try this ansatz for an inverse of A:

i=(A+i) (A+]1)’1: (A+1) (ad +54) = ol +ad+ A+ pa°

The left and right hand side are equal if o and [ satisfy

a+ =0, 1=a+pA.
These equations have unique solution
1 1
L T U Y

which gives us a candidate for an inverse operator

(1) =14

One can now easily check that this operator is not only right inverse (which is true by our construction)
but also a left inverse.

oo

(o) =5 (-4

Alternative solution: we can also use the geometric series to find the inverse operator. We have

k:iAw(—A)iAmz%
1=0 m=0

where in the middle part we split the sum over all integers to a sum over all even integers 2/ plus a
sum over all odd integers 2m + 1.

Exercise 10

Consider the operator A=4

dx*
(i) Use the Taylor expansion to find out how ¢4 acts on wavefunctions. Interpret the result physically.

(ii) How do operators B = sinh(aA) and C = sin(aA) act on wavefunctions?
Solution

(i) Acting with ¢4 on a function ¥(x) we have

o

A d Oék k
Aita) =t ute) = 3 57 (45 ) vl =it a)

k=0

so the resulting operator corresponds to a space translation of the wavefunction.
(ii) We have

B = sinh (afl) = M.

2
By the result of the previous exercise this acts on ¢(x) as

N 1
By(z) = 5 (d(z +a) —¢(z - ).
Replacing @ — icv and dividing by ¢ we find



Exercise 11
Find At for A = |¢) ()|. Remember that A' is defined such that for any two vectors [¢) and |x) we have
(vldx) = (ATulx).
Solution By definition of the conjugate operator we have
AT ) = (A1), Im)) = (WO le) Im)) = () ()

Comparing both sides we see that

AV = 19) (ol

Exercise 12

(i) Show that for an orthonormal basis |§;) we have the completeness relation
> 16k) (0¥ = 1.
i

(ii) Consider a product of two operators C = AB. Remember that the matrix elements of the operator A
in the orthonormal basis |0;) were defined as A7 = (67| A|6;). Show that the components of C' are
given by the usual product of matrices.

(iii) Show that the operator A can be reconstructed from its components via

A=A, 55 (6
jk

Solution

(i) Since we have an orthonormal basis, any vector |1) can be expanded as
= a;15;)
J

and

(8" 10) =" a; (5%(6;) = ay.
J
Let us now apply >, [0%) (6| to an any vector [t))

Z [ <5k|¢> = Zak |0k) = [¥) .
k k

Since this holds for all vectors, we see that Y, |6%) (5| = 1

(ii) We have
(C)Y, = (| AB o) => (67| Aléx) (6"| B o) = ZA%B’*
E
which is the usual rule for matrix multiplication. In the middle equatlon we inserted the completeness

relation.

(iii) Plugging in the expression for components

S| Ala) 165) (65| = 316, (87] Aloy) (65| = A
7.k

Jik

Exercise 13

It was shown in the lecture that the matrix elements of the conjugate operator are
(@[ CHiay = (@' ¢l

i.e. the matrix of components is complex conjugate transpose. Use this to show that (AE)T = BTAT,



Solution Let us calculate
(57] (AB)T 16) = [<5l| AB \5j>]* = [<5l| Aloy) (o*| B |5j>r -y [<5z| f‘léw]* {<5k| B W
= " [t At o] (7] BT 18] = 3 (o7

k

B |ox) (5%| AT |6y)

= (87| BTAT |oy) .

Exercise 14 (central tutorial)

Consider a change of orthonormal basis |6) — ‘5> in the Hilbert space described by U7), = <51\5k>.

(i) Show that U7}, are components of unitary matrix, i.e. (UT)/, = (U*;)* = (U~1)/,.

(ii) Show that the components of bra vectors in the old and in the new basis are related by

b= (U,
j

(iii) Show that the matrix elements of operators transform as
Al =N U AU
ki
Solution
(i) We have
(0710) = (3"18;) = (U*))" = (UMY,
To see that this is an inverse of U, calculate

(U =30 =3 (516) (18 ) = (310) = of = (i
l

l

ke
Multiplication in opposite order is analogous.

(ii) Expressing the bra vector in two bases,
S e (B = (0l = 300 (87 = S (9718 (3
k j j.k
Comparing both sides we see that
k=Y U <5j|5k> = > (U,
J J
(iii) The matrix elements of A in the new basis are

Al = <Sj\ A ‘5n> -y <Sj|5k> (6%| Alay) <5l|5m> =S U AR U
k,l

k,l

Exercise 15

Consider a Hermitian operator A and a unitary operator U.

(i) Show that the trace of the operator /AlA is independent, of the choice of the basis. What property of the
trace follows from the hermiticity of A?

(ii) How are spectra of A and of UAUT related?



Solution

(i)

Let us calculate the trace of A in the new basis

SO(F)AL5) = S0 (W10 (04 Aday (03, ) = 37 (8M10k) (0¥ Al = 3 (4] A s

J Jiksl k,l

In particular we can choose a basis which diagonalizes A. In this basis the eigenvalues are real (because
A is Hermitian) so also their sum, i.e. the trace is real.

Recall that A € C is in the spectrum of A if there exists a vector |¢) such that
Al = X).
Acting on this equation with U from the left, we find that the vector |n) = U |¢) satisfies the equation
UAU" ) = UAUTT ) = AU [9)) = Aln),

i.e. is an eigenvector of UAU' with the same eigenvalue A. Since U is unitary (and so in particular

invertible), this provides a one-to-one correspondence between eigenvectors of A and UAU'.

Exercise 16

Consider a linear operator acting on a Hilbert space such that it maps one orthonormal basis into another
one, U |4;) = |6;> How can you write this operator in terms of basis vectors? Find its hermitian conjugate.

Solution

(i)

(i)

If we consider action of 3_, |0;) (6% | on basis vectors,

D18 (8418) = |3)

which is exactly how U acts.
By the definition of conjugate operator, we have

(7] U = (87|
which is the same as the action of Y, |65) (6|,

(87 D18} ("] = (871
k

Exercise 17 (central tutorial)

The

position operator Z is hermitian. The momenum operator satisfies the commutation relation

[#,p] = ihi.

Does this imply that p is a hermitian operator? Can there exist finite dimensional matrices & and p which
satisfy these commutation relations?

Solution

(i)

The commutation relations don’t force p to be hermitian. If we had a hermitian solution (like the
standard p = —ih%) we can add to it any complex multiple of & without spoiling the commutation

relations. Now we have

(p+ai) =p' +a* it =p+a*d
which agrees with p+ o only if « is real. So taking o with non-vanishing imaginary part is a counter-
example to the question.



(ii) There cannot exist any finite-dimensional matrices & and p which would satisfy the canonical com-
mutation relations. The reason for it is that the trace of any commutator vanishes by cyclicity of the
trace,

Tr [A,B] =Tr (AB—BA) :ﬂ(AB—AB) =0
while the trace of the identity matrix on the right-hand side is the dimension of the vector space. We

thus find an equation X
0="Tr[Z,p| =ihTr1l =1ihn

which is a contradiction with finite dimensionality of the vector space.

Exercise 18 (central tutorial)

Check by direct calculation that
/ dg" [ X1y P"" = Py X | = 08, = ihé(q ~ )
where the matrix elements of X are X9, = (q| X |¢/) and similarly for P.
Solution We can rewrite the formula in bra-ket notation as
/dq” [l X 1a") (a" | P1d') = {al Pla") (a"| X |d)] = it lald) = indla — q')
Now we have the basic identification between vectors and wave functions

Y(q) = (qlv)

and so

(d X [0) = avla),  (al Pl) = —ihd(a).
Choosing |¢) = |¢’) so that ¥(q) = (¢|¢') = 6(¢ — ¢') we find the matrix elements

(@ X1d)=a6(a—q),  (alPld) =—ihd,d(q — q') = —ihd'(q — ')
We can now use this in the equation above
1= [ [l X 10" @1 Pla) ~ (| Pla") ") X o)
= /dq” [q0(q — ¢")(—=ih)d"(¢" — ¢') — (=ih)d" (¢ — ¢")q" (" — ¢')]

= q(—ih)0'(q —¢') — (=ih)d' (¢ — ¢')q' = —ih(qg — ¢V (¢ — ¢')
= ihd(q — q').

We used the relation z¢'(x) = —d(x) which follows by acting on test function ¢(x),

/xa'( /5 /5 )+ e/ (x /5



