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Exercise 9 (central tutorial)

(i) Show that if ÂB̂ = 1̂ = ĈÂ then we have

B̂ = Â−1 = Ĉ.

Remember that the inverse operator Â−1 satis�es |ψ〉 = Â |χ〉 if and only if |χ〉 = Â−1 |ψ〉.

(ii) Given an example of operators Â and B̂ in Hilbert space for which ÂB̂ = 1̂ holds but for which
B̂Â 6= 1̂.

(iii) Let Â be an operator such that Â2 = λ1̂ where λ 6= 1 is a complex number. Write
(
Â+ 1̂

)−1
explicitly

in terms of Â.

Solution

(i) To prove that B̂ = Ĉ we can multiply the �rst equation by Ĉ from the left:

Ĉ
(1)
= Ĉ(ÂB̂) = (ĈÂ)B̂

(2)
= B̂.

To show that B̂ = Ĉ is the inverse operator to Â, we �rst assume that |ψ〉 = Â |χ〉 and act on this
with Ĉ and �nd |χ〉 = Ĉ |ψ〉 which shows one direction of the equivalence. The other direction can be
shown analogously by acting with B̂.

(ii) We can consider a rescaled version of ladder operator in the harmonic oscillator. Remember that there
we have an orthonormal basis of states |n〉 where n = 0, 1, 2, . . . and creation and annihilation operator
which act as

â† |n〉 =
√
n+ 1 |n+ 1〉 , â |n〉 =

√
n |n− 1〉 .

Consider now modi�ed ladder operators such that

b̂† |n〉 = |n+ 1〉

and

b̂ |n〉 =

{
|n− 1〉 , n > 0

0, n = 0

We can now choose Â = b̂ and B̂ = b̂†. Acting on any basis state we �nd

ÂB̂ |n〉 = b̂b̂† |n〉 = b̂ |n+ 1〉 = |n〉

so ÂB̂ = 1̂ but acting on the ground state |0〉 we have

B̂Â |0〉 = b̂†b̂ |0〉 = 0

so Â and B̂ are not inverse of each other.



(iii) Since Â squares to something proportional to identity, any function of Â that can be written as power
series in Â can be reduced to the form

α1̂+ βÂ.

Let's try this ansatz for an inverse of Â:

1̂ =
(
Â+ 1̂

)(
Â+ 1̂

)−1
=
(
Â+ 1̂

)(
α1̂+ βÂ

)
= α1̂+ αÂ+ βÂ+ βÂ2

The left and right hand side are equal if α and β satisfy

α+ β = 0, 1 = α+ βλ.

These equations have unique solution

α =
1

1− λ
, β = − 1

1− λ

which gives us a candidate for an inverse operator(
Â+ 1̂

)−1
=
1̂− Â
1− λ

.

One can now easily check that this operator is not only right inverse (which is true by our construction)
but also a left inverse.

Alternative solution: we can also use the geometric series to �nd the inverse operator. We have(
Â+ 1̂

)−1
=

∞∑
k=0

(
−Â
)k

=

∞∑
l=0

λl + (−Â)
∞∑
m=0

λm =
1̂− Â
1− λ

where in the middle part we split the sum over all integers to a sum over all even integers 2l plus a
sum over all odd integers 2m+ 1.

Exercise 10

Consider the operator Â = d
dx .

(i) Use the Taylor expansion to �nd out how eαÂ acts on wavefunctions. Interpret the result physically.

(ii) How do operators B̂ ≡ sinh(αÂ) and Ĉ ≡ sin(αÂ) act on wavefunctions?

Solution

(i) Acting with eαÂ on a function ψ(x) we have

eαÂψ(x) = eα
d
dxψ(x) =

∞∑
k=0

αk

k!

(
d

dx

)k
ψ(x) = ψ(x+ α)

so the resulting operator corresponds to a space translation of the wavefunction.

(ii) We have

B̂ = sinh
(
αÂ
)
=
eαÂ − e−αÂ

2
.

By the result of the previous exercise this acts on ψ(x) as

B̂ψ(x) =
1

2
(ψ(x+ α)− ψ(x− α)) .

Replacing α→ iα and dividing by i we �nd

Ĉψ(x) =
i

2
(ψ(x− iα)− ψ(x+ iα)) .



Exercise 11

Find Â† for Â = |ϕ〉 〈ψ|. Remember that Â† is de�ned such that for any two vectors |ψ〉 and |χ〉 we have〈
ψ|Âχ

〉
=
〈
Â†ψ|χ

〉
.

Solution By de�nition of the conjugate operator we have

〈χ| Â† |η〉 =
(
Â |χ〉 , |η〉

)
=
(
〈ψ|χ〉 |ϕ〉 , |η〉

)
= 〈χ|ψ〉 〈ϕ|η〉

Comparing both sides we see that
Â† = |ψ〉 〈ϕ| .

Exercise 12

(i) Show that for an orthonormal basis |δj〉 we have the completeness relation∑
k

|δk〉
〈
δk
∣∣ = 1̂.

(ii) Consider a product of two operators Ĉ = ÂB̂. Remember that the matrix elements of the operator Â
in the orthonormal basis |δj〉 were de�ned as Ajk ≡

〈
δj
∣∣ Â |δk〉. Show that the components of Ĉ are

given by the usual product of matrices.

(iii) Show that the operator Â can be reconstructed from its components via

Â =
∑
jk

Ajk |δj〉
〈
δk
∣∣

Solution

(i) Since we have an orthonormal basis, any vector |ψ〉 can be expanded as

|ψ〉 =
∑
j

aj |δj〉

and 〈
δk|ψ

〉
=
∑
j

aj
〈
δk|δj

〉
= ak.

Let us now apply
∑
k

∣∣δk〉 〈δk| to an any vector |ψ〉∑
k

|δk〉
〈
δk|ψ

〉
=
∑
k

ak |δk〉 = |ψ〉 .

Since this holds for all vectors, we see that
∑
k

∣∣δk〉 〈δk| = 1̂.

(ii) We have

(Ĉ)j l =
〈
δj
∣∣ ÂB̂ |δl〉 =∑

k

〈
δj
∣∣ Â |δk〉 〈δk∣∣ B̂ |δl〉 =∑

k

AjkB
k
l

which is the usual rule for matrix multiplication. In the middle equation we inserted the completeness
relation.

(iii) Plugging in the expression for components∑
j,k

〈
δj
∣∣ Â |δk〉 |δj〉 〈δk∣∣ =∑

j,k

|δj〉
〈
δj
∣∣ Â |δk〉 〈δk∣∣ = Â.

Exercise 13

It was shown in the lecture that the matrix elements of the conjugate operator are〈
δj
∣∣ Ĉ† |δl〉 = [〈δl∣∣ Ĉ |δj〉]∗ ,

i.e. the matrix of components is complex conjugate transpose. Use this to show that (ÂB̂)† = B̂†Â†.



Solution Let us calculate〈
δj
∣∣ (ÂB̂)† |δl〉 = [〈δl∣∣ ÂB̂ |δj〉]∗ =∑

k

[〈
δl
∣∣ Â |δk〉 〈δk∣∣ B̂ |δj〉]∗ =∑

k

[〈
δl
∣∣ Â |δk〉]∗ [〈δk∣∣ B̂ |δj〉]∗

=
∑
k

[〈
δk
∣∣ Â† |δl〉] [〈δj∣∣ B̂† |δk〉] =∑

k

〈
δj
∣∣ B̂† |δk〉 〈δk∣∣ Â† |δl〉

=
〈
δj
∣∣ B̂†Â† |δl〉 .

Exercise 14 (central tutorial)

Consider a change of orthonormal basis |δ〉 →
∣∣∣δ̃〉 in the Hilbert space described by U jk ≡

〈
δ̃j |δk

〉
.

(i) Show that U jk are components of unitary matrix, i.e. (U†)jk = (Ukj)
∗ = (U−1)jk.

(ii) Show that the components of bra vectors in the old and in the new basis are related by

ψ̃k =
∑
j

ψj(U
†)jk

(iii) Show that the matrix elements of operators transform as

Ãjm =
∑
kl

U jkA
k
l(U
†)lm.

Solution

(i) We have 〈
δj |δ̃k

〉
=
〈
δ̃k|δj

〉∗
= (Ukj)

∗ = (U†)jk.

To see that this is an inverse of U , calculate

(UU†)jk =
∑
l

U j l(U
†)lk =

∑
l

〈
δ̃j |δl

〉〈
δl|δ̃k

〉
=
〈
δ̃j |δ̃k

〉
= δjk = (1̂)jk.

Multiplication in opposite order is analogous.

(ii) Expressing the bra vector in two bases,∑
k

ψ̃k

〈
δ̃k
∣∣∣ = 〈ψ| =∑

j

ψj
〈
δj
∣∣ =∑

j,k

ψj

〈
δj |δ̃k

〉〈
δ̃k
∣∣∣

Comparing both sides we see that

ψ̃k =
∑
j

ψj

〈
δj |δ̃k

〉
=
∑
j

ψj(U
†)jk

(iii) The matrix elements of Â in the new basis are

Ãjm =
〈
δ̃j
∣∣∣ Â ∣∣∣δ̃m〉 =

∑
k,l

〈
δ̃j |δk

〉 〈
δk
∣∣ Â |δl〉〈δl|δ̃m〉 =

∑
k,l

U jkA
k
l(U
†)lm.

Exercise 15

Consider a Hermitian operator Â and a unitary operator Û .

(i) Show that the trace of the operator Â is independent of the choice of the basis. What property of the
trace follows from the hermiticity of Â?

(ii) How are spectra of Â and of Û ÂÛ† related?



Solution

(i) Let us calculate the trace of Â in the new basis∑
j

〈
δ̃j
∣∣∣ Â ∣∣∣δ̃j〉 =

∑
j,k,l

〈
δ̃j |δk

〉 〈
δk
∣∣ Â |δl〉〈δl|δ̃j〉 =

∑
k,l

〈
δl|δk

〉 〈
δk
∣∣ Â |δl〉 =∑

k

〈
δk
∣∣ Â |δk〉 .

In particular we can choose a basis which diagonalizes Â. In this basis the eigenvalues are real (because
Â is Hermitian) so also their sum, i.e. the trace is real.

(ii) Recall that λ ∈ C is in the spectrum of Â if there exists a vector |ψ〉 such that

Â |ψ〉 = λ |ψ〉 .

Acting on this equation with Û from the left, we �nd that the vector |η〉 ≡ Û |ψ〉 satis�es the equation

Û ÂÛ† |η〉 = Û ÂÛ†Û |ψ〉 = λÛ |ψ〉 = λ |η〉 ,

i.e. is an eigenvector of Û ÂÛ† with the same eigenvalue λ. Since Û is unitary (and so in particular
invertible), this provides a one-to-one correspondence between eigenvectors of Â and Û ÂÛ†.

Exercise 16

Consider a linear operator acting on a Hilbert space such that it maps one orthonormal basis into another
one, Û |δj〉 =

∣∣δ′j〉. How can you write this operator in terms of basis vectors? Find its hermitian conjugate.

Solution

(i) If we consider action of
∑
k |δ′k〉

〈
δk
∣∣ on basis vectors,∑

k

|δ′k〉
〈
δk|δj

〉
=
∣∣δ′j〉

which is exactly how Û acts.

(ii) By the de�nition of conjugate operator, we have〈
δj
∣∣ Û† = 〈δ′j∣∣

which is the same as the action of
∑
k |δk〉

〈
δ′k
∣∣,〈

δj
∣∣∑
k

|δk〉
〈
δ′k
∣∣ = 〈δ′j∣∣ .

Exercise 17 (central tutorial)

The position operator x̂ is hermitian. The momenum operator satis�es the commutation relation

[x̂, p̂] = i~1̂.

Does this imply that p̂ is a hermitian operator? Can there exist �nite dimensional matrices x̂ and p̂ which
satisfy these commutation relations?

Solution

(i) The commutation relations don't force p̂ to be hermitian. If we had a hermitian solution (like the
standard p̂ = −i~ ∂

∂x ) we can add to it any complex multiple of x̂ without spoiling the commutation
relations. Now we have

(p̂+ αx̂)
†
= p̂† + α∗x̂† = p̂+ α∗x̂

which agrees with p̂+αx̂ only if α is real. So taking α with non-vanishing imaginary part is a counter-
example to the question.



(ii) There cannot exist any �nite-dimensional matrices x̂ and p̂ which would satisfy the canonical com-
mutation relations. The reason for it is that the trace of any commutator vanishes by cyclicity of the
trace,

Tr
[
Â, B̂

]
= Tr

(
ÂB̂ − B̂Â

)
= Tr

(
ÂB̂ − ÂB̂

)
= 0

while the trace of the identity matrix on the right-hand side is the dimension of the vector space. We
thus �nd an equation

0 = Tr [x̂, p̂] = i~Tr 1̂ = i~n

which is a contradiction with �nite dimensionality of the vector space.

Exercise 18 (central tutorial)

Check by direct calculation that∫
dq′′

[
Xq

q′′P
q′′
q′ − P qq′′Xq′′

q′

]
= i~δqq′ = i~δ(q − q′)

where the matrix elements of X̂ are Xq
q′ ≡ 〈q| X̂ |q′〉 and similarly for P̂ .

Solution We can rewrite the formula in bra-ket notation as∫
dq′′

[
〈q| X̂ |q′′〉 〈q′′| P̂ |q′〉 − 〈q| P̂ |q′′〉 〈q′′| X̂ |q′〉

]
= i~ 〈q|q′〉 = i~δ(q − q′)

Now we have the basic identi�cation between vectors and wave functions

ψ(q) = 〈q|ψ〉

and so
〈q| X̂ |ψ〉 = qψ(q), 〈q| P̂ |ψ〉 = −i~∂qψ(q).

Choosing |ψ〉 = |q′〉 so that ψ(q) = 〈q|q′〉 = δ(q − q′) we �nd the matrix elements

〈q| X̂ |q′〉 = qδ(q − q′), 〈q| P̂ |q′〉 = −i~∂qδ(q − q′) = −i~δ′(q − q′).

We can now use this in the equation above

I =

∫
dq′′

[
〈q| X̂ |q′′〉 〈q′′| P̂ |q′〉 − 〈q| P̂ |q′′〉 〈q′′| X̂ |q′〉

]
=

∫
dq′′ [qδ(q − q′′)(−i~)δ′(q′′ − q′)− (−i~)δ′(q − q′′)q′′δ(q′′ − q′)]

= q(−i~)δ′(q − q′)− (−i~)δ′(q − q′)q′ = −i~(q − q′)δ′(q − q′)
= i~δ(q − q′).

We used the relation xδ′(x) = −δ(x) which follows by acting on test function φ(x),∫
xδ′(x)φ(x)dx = −

∫
δ(x)

d

dx
(xφ(x))dx = −

∫
δ(x) [φ(x) + xφ′(x)] dx = −

∫
δ(x)φ(x)dx


