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Exercise 64 (Central Tutorial)

Let’s consider the hydrogen atom ignoring the spins of the electron and of the proton. In order to have
non-zero transition probability from an energy state |1,) to another one | ), the matrix element of the
dipole moment operator Dy, = e (¢ | 7] 1),) must be non-zero too (# = (&,9,2)). The conditions to have
non-zero transition probabilities are called selection rules.

(i) Which are good quantum numbers that characterize the state | 1) of the hydrogen atom? To what do
they physically correspond?

(ii) Which values can those quantum numbers have? What is the degeneracy of the state for a given energy
level?

(iii) Recalling the definition of the angular momentum operator L = (L, Ly, L.), calculate
L] o [Leg] L [E7] (1)

(iv) Using the results of the previous point and taking the expectation values of those between two different
states | ¢,) and | ), derive the selection rules to have D,y # 0.

(v) These are not the only selection rules. Recall the definition of the Casimir operator L?; what is the
action of this operator on an eigenstate |1)? Prove that

[iz, [P, TH = 2h2(PL2 + [%7) 2)

(vi) Use the previous results to find other selection rules for the transition between |,) and | ).

(vii) What do these selection rules correspond physically to?

Solution

(i) From the course of QMI we know that a state of the hydrogen atom (ignoring spins) is characterized
by three quantum numbers: n for the energy level, | for the total angular momentum and m for the
projection of the angular momentum on the Z-axis. Therefore, not considering super-positions of states,
we can write the state as

|¥) =|n,l,m) (3)

(ii) The quantum number for the energy n can take all positive integer values, i.e. n € N; [ can take integer
values in [0,n — 1]; lastly, m can take integer values in [—I, +I].
For a fixed [, m has 2] + 1 possibilities. In the same way, for a fixed n, [ takes values from 0 to n — 1.
Therefore the degeneracy for a given energy level specified by n is
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=0

2
1=0



(iii)

The angular momentum operators for each component are
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Using Heisenberg commutation relations

[72]7]3]@] = Zhéjkl ’ 7= (.’L’,y7Z) ) ﬁ = (ﬁmﬁyaﬁZ)

it follows that:

since L, does not depend on % or p,.
(L2, 8] = 8Dy — 920 2] = 0 = [0, 2] = ihf

(L2 3] = [y — G2, 9] = Dy, 3] — 0 = —ind

(7)

Let’s calculate the matrix element of # with these information. As we know the action of L, on |n,l,m)

is given by R
L.|n,l;m) =hm|n,l,m)

0= <n’,l',m' [I:Z,é} ‘w> = <n’,l',m" [l:mé} ‘n,l,m> = <n’,l',m'
P Ya
= h(m/ —b m) (n',I',m"| 2| n,l,m)

Therefore (n',I',m’ | 2| n,l,m) can be different from 0 only if m = m/.
Doing the same with the other two commutators we find that:

FMMMWWM%mzmw—mmUWHMme

—ih <n/a llvm/ ‘ z ‘ n7l3m> = h(m/ - ’ITL) <’Il/, l/7m/ | g ‘ n7lam>

L.2— 2L,

(®)

n,l,m> =

9)

(10)

The solution found before m’ = m would lead to (n/,I',m’|Z|n,l,m) = (0, I',m'|g|n,l,m) = 0.

Solving this system with m’ # m we find that:
B2 (0 U m! | n, l,m) = h2(m' —m)* (01", m | §|n,1,m)

It is true only if:
h? =h2(m —m)? <= m -—m==1

Therefore the conditions to have a non-zero dipole moment expectation value are

m —m=Am=0,%+1

The casimir operator is defined as:
L* =12+ 12412

Its action on a state ¥ = |n,l,m) is given by

L n.l,m) = B3+ 1) | 0,1, m)

(11)

(12)

(15)

To prove the relation we first prove other useful relations. In the following we are going to use Einstein’s

convention with Euclidean metric.

(16)



where the commutation relation between angular momentum operators has been used:
{I:i;i/j} = ihejiLi (17)
Lastly:
|:Li7 £3:| = €inm [inﬁma i‘j} = €inmn [ﬁma j]] = _ihfinmi'némj = iheijkfﬁk (18)

We can now start the computation.

[iQ,fn] =L {ﬁi,i"n} [L“:cn} Li = ili€in; (Liz; + ;L) P8 iheing (€ijrdy + 22;L;) = 19)
= 2ih(eijn§:iLJ~ — ihdy)
Therefore:
77 ] = %ih(jL, — 2L, — ihi)
'ﬁ,g} = %ih(2L, — &L, — ihy) (20)
77, z] = 2ih(iL, — gL, — ih2)
We now calculate the commutator f/2, [i}2, 2“

[f,z, [L2ZH - {ff,m(@ﬁy — gk, fmz)] Bq.16 Qm([L2 }Ey _ [LQ,y} fw—in [LzzD (21)

We analyze the first two terms separately:

[L x} = 2%h(jL., — 2L, — ihi)L, = 2ih(§L. — ihi)L, — Qihélg =
. (22)
L 9in(L.gL, — 212)
For the second one:
- [LQy} Ly = —2ih(3L, — 2L, — ih§)Ly = 2ih(—2L2 + 2L Ly + ihjLy) = o
23
PLI® 9in(L.aL, — 212)
Adding them:
[ﬁ, x} L, - [iz, y} Ly = 2i(Lo (8L, + 9L,) — (L2 + £2)) = 2ih(Lai - L — 202 — 517 + 512) (24)
But we have that: . .
r-L= i‘sz = €ijkf¢i‘jﬁk =0 (25)
Therefore = R o R s
[L x] L, - [L y] L, = —2ihsL (26)
Combining this result with
2 22, a2
—ih [L ,z} =—ih(L 2—ZL") (27)
we get from Equation 21 the final result:
[ff, [ﬁ, g]] = om2(:L” + 172) (28)

Therefore we can conclude in general that:

27,17 7]] =212 k" + 17 (29)



Note: If we consider instead of 7 an operator © such that
L, 05] = iheijuin (30)

then the proof is almost identical: the only difference is that in general Equation 25 is not true anymore.
This would lead to an extra term proportional to L(v - L). Keeping into account the coefficient, the
result reads L A

[L , [ﬁ, UH —on?(oL” + L) — 4r?L(v - L) (31)

We can now use this result to derive the other selection rules.

<n/,l',m’ [ﬁ, [LZT-H ’n,l,m> — o2 <n’,l/,m’ Y A n,l,m> _
"bb wa (32)

=20 [V (' + 1) + 1L+ D)) (', 1, m | 7| n, 1, m)
But on the other side:
(w1 [ﬁ [ﬁf“ ‘n,l,m> = (w00 L [ﬁ,ﬂ - [ﬁ,ﬂ L ‘n,l,m> -
=2 +1) — 11 +1)] <n’,z',m’ [132,%} ’nlm> = (33
=R+ 1) =1+ DL, m | # | n,lm)

Therefore the condition to have a non-zero dipole moment is:
2

2"+ D +IU+ D] =T +1) =11 +1)] (34)
The term in the bracket on the right can be written as
V' +1) —1(0+1)=0"+1+1)(1" =) (35)
The one on the left instead:
2+ 1) +11+ D))=V +1+1)*+ 1 -1 -1 (36)

Therefore the condition in Equation 34 can be written as:
[("+1+1)*=1] [V =1)*—-1] =0 (37)
The second term of the product is 0 only if:
I'—1=+1 (38)

The first term is 0 only if I’ = [ = 0; the corresponding matrix element is in principle not zero but
direct computation of (n/,0,0 |7 |n,0,0) shows that this matrix element is indeed vanishing. In fact, the
radial part of the associated wave function does not depend on the angle, while the spherical harmonies
Y{ (0, ¢) is constant: therefore the integration of 7 on the solid angle gives a vanishing result.

Abbildung 1: Possible transitions.



(vii) The selection rules are
Al =+1 (39)

The condition on Al has an important physical reason. The transition between two energy level happens
through the absorption/emission of a photon which is a spin-1 particle. Therefore the selection rule on
[ just reflects angular momentum conservation.

{Amzo,ﬁzl

Exercise 65

Show that the life time 7 of an atom in an excited state is inversely proportional to the Einstein-coefficient
A of spontaneous emission.

Solution The definition of Einstein coefficient is
d Ny
dt

where N is the number of atoms in the excited level and Ag; is the related Einstein coefficient.
The solution is

= —A21N2 (40)

Ny(t) = Na(0)e= A=t (41)

Therefore the lifetime is 1
_ = 42
= (42)

Exercise 66

Consider a two-level system as in the lecture. Write the equations for the occupation number of the lower

level, dé\i‘l, and upper level, d{gb. Using these, show that N, + N, = const.

Solution The equations for the occupation numbers of the two levels are given by

dN,
—Y = —NyBpap + NuBapp — NpAas
dt
AN (43)
dita = NpBpap — NoBapp + NoAap
By summing these two equations we obtain
d
%(Na + Ny) =0 = N, + N, = const. (44)
Exercise 67
Consider the general Schridinger equation
2 0¥(g, ) h 9*¢(q,t)
h =—— 4V t 45
R = L SR - Via(a.) (45)
where V is at most quadratic in ¢. Validate that the Ansatz
1 i (q — qd(t))Q
)=~ £) 4+ —per(t)(q — qa(t)) — el 46
b(g,t) = o exp |alt) + 2pa(t)(d - ga(t)) 502(1) (46)
where po = m% leads to an equation of the form
Fi(t) + F2(t)(q — ga () + F3(t)(q — ga(t))* = 0 (47)
Show that
da i ,p? ih
F = O = — = — ct V p —
! dt h<2m (¢e1)) 2mao?(t)
dpcl ov
F,=0= =——(qc 48
2 di dq (qet) (48)
ng()EdUQ 7@71.827‘/ 4
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Solution Substituting the ansatz for (g, t) into (43) and using py one obtains

Tdt m
5t . da d c X do
0= % —h20? 4 phot —2mV (q)o* + QthEOA — 2m04%(q —qu) + (B2 + QthGE)(q —qa)?
(49)
Since 221 £ 0, it follows
2 2, 2 4 4 L da 1dpel 2 - do 2
—h0" + pyo” = 2mV(q)o” + 2ikm—ro” — 2mo” == (q = qa) + (B° + 2iimo—) (g = ga)” =0 (50)
Expanding V (¢) around g, we obtain
av 1d?
V(@) = V(ga) + 2 (g — ) + = 2+ (q — qa)? 51
(9) (qz)+dq(q qz)+2dq2(q ) (51)

Note that all higher derivatives of V vanish since V is at most quadratic in g. Following this, let’s collect all
the terms

d
Fi(t) = —h*0® 4+ p%o* — 2mV (qq)o* + 2ihm o

dt
Fy(t) = —2m04% - 2m04% (52)
F3(t) = h* + 2ihmacfl—(z - m04(§q‘2/
Then, the equation (50) becomes
Fi(t) + Fa(t)(q — ga(t) + F3(t)(g = ga(t)* = 0 (53)

Now from the condition F; = F» = F3 = 0 the proposition given by (48) follows.

General information

The lecture takes place on:

Monday at 10:00 - 12:00 c.t. in B 052 (Theresienstrafe 37)

Friday at 10:00 - 12:00 c.t. in B 052 (Theresienstrafe 37)
The central tutorial takes place on Monday at 12:00 - 14:00 c.t. in B 139 (Theresienstrafe 37)
The webpage for the lecture and exercises can be found at

https://www.physik.uni-muenchen.de/lehre/vorlesungen/wise_19_20/T_M1_TV_-Quantum-Mechanics-II



