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Exercise 58 - Short questions

(i) Name at least four physical e�ects which can be explained with quantum mechanics and not with
classical mechanics.

(ii) Suppose you are given a Hamiltonian of a free particle. What are the main things you should do in
order to quantize the system?

(iii) Which of the following operators are Hermitian? Position operator, momentum operator, annihilation
operator (de�ned in the analysis of harmonic oscillator), Hamiltonian. Give another example of a
non-Hermitian operator.

(iv) Simplify the following expression
[p̂q̂, q̂2] (1)

(v) What property does an operator have to satisfy to correspond to a physical observable? Why?

(vi) Give an example of compatible operators (i.e. those who's commutator vanishes). What does this
imply for the eigenvectors of the operators if the operators have non-degenerate eigenvalues? Why?

(vii) Show that the hermicity of Hamilton operator follows from the unitarity of the time-evolution operator.

(viii) Consider a system of two pendulums of length l on whose ends are attached balls of mass m. Suppose
that these two balls are connected via weak spring k. (Figure 1.) The Lagrangian of the system is
then given by

L =
1

2
ml2θ̇21 +

1

2
ml2θ̇22 −

1

2
mglθ21 −

1

2
mglθ22 −

1

2
kl2(θ2 − θ1)2 (2)

Find the normal coordinates in terms of θ1 and θ2. What is the spectrum of the Hamiltonian after
quantization?

Figure 1: Pendulums connected via spring.

(ix) Suppose we have 2 systems which in the beginning do not interact. Then they interact and at some
point stop interacting again. Can we write the wave function of the full system as a product of wave
functions of �rst and second system after they stop interacting?

(x) Consider a particle in a potential V̂ . How can you interpret the zeroth, �rst and second order of the
perturbation expansion of the propagator K(f, i)? Write them down.



Exercise 59 - Quantization

Consider a classical scalar �eld theory with the Lagrangian density

L =
1

2

(
∂µφ∂νφη

µν −m2φ2
)
. (3)

(i) Find the conjugate momenta and the Hamiltonian density.

(ii) Find the equation of motion and by Fourier expanding the �eld as

φ(t,x) =

∫
d3k

(2π)3/2
eik.xφk(t), (4)

show that the dispersion relation is ω2
k = k2 + m2. What property does φk(t) have under complex

conjugation?

We can de�ne the equal time Poisson bracket for two functionals f and g as

{f(t,x), g(t,y)} =

∫
d3z

(
δ f(t,x)

δφ(t, z)

δ g(t,y)

δπ(t, z)
− δ g(t,y)

δφ(t, z)

δ f(t,x)

δπ(t, z)

)
. (5)

(iii) Find the equal time Poisson brackets of all combinations of φ and π.

(iv) We can de�ne

ak(t) =

∫
d3x

(2π)3/2
a(x)e−ik.x =

∫
d3x

(2π)3/2
e−ik.x

√
ωk
2

(
φ(t,x) +

i

ωk
π(t,x)

)
(6)

and the corresponding complex conjugate a∗k(t). Use your result of the previous question to �nd the
equal time Poisson brackets of all combinations of ak(t) and a∗k(t).

(v) Find the equations of motion of ak(t) and a∗k(t) and show that

ak(t) = ake
−iωt and a∗k(t) = a∗ke

iωt (7)

Use this to show that we can write the �eld as

φ(t,x) =

∫
d3k

(2π)3/2
√

2ωk

(
ak(t)eik.x + ak(t)∗e−ik.x

)
=

∫
d3k

(2π)3/2
√

2ωk

(
ake
−ik.x + a∗ke

ik.x
)
,

(8)

where k.x = ωt− k.x.

(vi) So far everything has been done classically. What do we have to do to move to the quantum picture?
Write down all the Poisson brackets you calculated in the quantum picture. What is di�erent?

(vii) Show that the Heisenberg equation reproduces the equations of motion of the classical system for φ
and π in the quantum mechanical picture.

Exercise 60 - Density matrix in 2-dimensions and Bloch Sphere

We are going to discuss the density matrix formalism in the case of a 2-dimensional Hilbert space; as a
physical example, it corresponds to the Hilbert space of a spin 1/2 particle.

(i) First of all, let's see how a (pure) state looks like. Prove that a generic normalized state (i.e. a
ray-vector of the Hilbert space) can be written as

|ψ〉 = cos

(
θ

2

)
| 0〉+ eiφ sin

(
θ

2

)
| 1〉 with θ ∈ [0, π] , φ ∈ [0, 2π] (9)

where | 0〉 , | 1〉 are the eigenvectors of the Pauli matrix σ̂3 (the choice of σ̂3 is purely conventional).
Show that this means that the 2-dimensional Hilbert space of normalized states is isomorphic to the
2-Sphere S2. In this geometric picture every state |ψ〉 is a point of S2: in this context, the sphere is
called Bloch Sphere.



(ii) Let's try now to enlarge our view considering also mixed states. To do that, we want to study �rst
how a general density matrix looks like. Recalling that {1,σ} (where σ = (σ̂1, σ̂2, σ̂3)) form a basis
for the operators in a 2-dimensional Hilbert space, it means that the most general operator is of the
form:

ρ̂α,β = α1 + β · σ (10)

Recalling the properties of a density matrix, �nd conditions on α,β to make ρ̂ a density matrix.

You should �nd:

ρ̂r =
1

2
(1 + r · σ) with |r| ≤ 1 r ∈ R3 (11)

Therefore, all states (pure and mixed) live within the interior of the Bloch Sphere.

(iii) For which r does ρ̂ represent a pure state? And a mixed one? Would you expect this from what you
had found in part (i)?

(iv) Show that any two orthonormal vectors correspond to antipodal points on the Bloch sphere.

(v) Consider the Hamilton operator Ĥ = aB · σ. Compute its expectation value in the state given by ρ̂r

(vi) For which value of r does ρ̂r correspond to a spin one-half particle which is randomly produced with
probability 1/2 in the state | 0〉 and with probability 1/2 in the state | 1〉? What is the the entropy in
this case?

(vii) A density matrix is said to be describing a maximally entangled state if it has maximum entanglement
entropy (or Von Neuman entropy). What is the maximum entanglement entropy in this case? To
which r (i.e. which point(s) in the Bloch Sphere) does it correspond?

(viii) Consider now spin one-half particles which are produced with spins in any direction with equal prob-
ability. Calculate the density matrix.

Exercise 61 - Time dependent two level system

Consider a two level system with orthonormal basis (ONB) | 1〉,| 2〉. The Hamiltonian is

H = H0 + V (t) (12)

where

H0 =

(
E1 0
0 E2

)
, V (t) =

(
0 δeiwt

δe−iwt 0

)
(13)

(i) Write down an equation for the time evolution in the interaction picture. Spell it out in components.
You obtain a system of two coupled di�erential equations.

Hint: Write |ψ(t)〉I as |ψ(t)〉I = c1(t) | 1〉+ c2(t) | 2〉 (two level system).

(ii) Show that one can eliminate c1(t) to obtain a di�erential equation for c2(t).

(iii) At t = 0 the system is in state | 1〉. Show that the above equation is solved by

c2(t) = Ae−it(ω−ω21)/2sin(Ωt) (14)

where A is a normalization constant, ω21 = (E2 − E1)/~ and

Ω2 = δ2/~2 +
(ω − ω21)2

4
(15)

(iv) Compute c1(t) and A.

(v) What is the probability to �nd the system in state | 2〉 after the time t? Determine also the maximum
(over t) probability.

(vi) Compute the previous transition probability in �rst order perturbation theory, taking into account
again that at t = 0 the system is in state | 1〉. Then compare to the exact result. When do the results
agree?



Exercise 62 - Scattering

The scattering amplitude in the �rst Born approximation is given by

f(ϑ, ϕ) = − m

2π~2

∫
d3rei(k−k

′)·rV (r). (16)

Here k is the wave vector of the incoming wave and k′ is the wave vector of the outgoing wave.

(i) Consider a spherically symmetric potential V (|r|). Simplify the formula in the �rst Born approxima-
tion, i.e. integrate over all angles.

(ii) What is the energy of the incoming wave in terms of k? Consider the low energy limit of the scattering
amplitude. Show that the expression for it is to the leading order

f = −2m

~2

∫ ∞
0

r2V (r)dr. (17)

(iii) Consider now the spherically symmetric potential well of depth V0 and radius a, i.e. a potential

V (r) =

{
−V0 |r| < a

0 |r| > a.
(18)

What is the low energy scattering amplitude in this case and what is the total cross section?

Exercise 63 - Propagator of the harmonic oscillator

In this exercise we want to calculate the propagator of the harmonic oscillator explicitly. Remember that
the propagator is given by:

K(qF , tF ; qI , tI) = lim
N→∞

∫
dq2...dqNdp1...dpN

N∏
j=1

〈qj+1 | pj〉 〈pj | qj〉 e−
i
~ εH(pj ,qj ,t+(j−1)ε) (19)

with the Hamiltonian of the harmonic oscillator given by:

H(p, q) =
1

2m
p2 +

mω2

2
q2 (20)

(i) Consider the sequence of N ×N matrices MN+1 given by

MN+1 =



α −1 0 0 ... 0
−1 α −1 0 ... 0
0 −1 α −1 ... 0
...

. . .
...

0 0 0 −1 α −1
0 0 0 0 −1 α


(21)

Show that det(MN+1) = α det(MN )− det(MN−1).

(ii) Now assume that det(MN ) = f(εN) and α = 2− ε2ω2.
Show that for ε→ 0,

f ′′(εN) = −ω2f(εN) with f(0) = 0, f ′(0) =
1

ε
(22)

follows from the result of (i).

(iii) Setting ε = tF−tI
N show that in the limit N →∞ we have

ε det(MN )→ 1

ω
sin(ω(tF − tI)); det(MN )− det(MN−1)→ cos(ω(tF − tI)) (23)

(iv) Perform the gaussian integration of p in (19) to write the propagator as

K(qF , tF ; qI , tI) = lim
N→∞

( m

2πi~ε

)N/2 ∫
dq2...dqNe

im
2~ε (q

2
F+q2I−2qNqF−2q2qI+

∑N
ij=2(MN )ijqiqj−ε2ω2q2I ) (24)

Hint: You may use the formula for n dimensional gaussian integration given in exercise 45.

(v) Perform the Gaussian integration over q and check if the result coincides with the one obtained in
Exercise 45.


