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Exercise 48

Consider the motion of a particle in a potential V(¢(¢)). Show that the second order of the perturbation
expansion of the propagator K (f,i) = K(qf,q;tf,t;) can be written as
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Here IT and I represent (qrr,trr) and (qr,tr) respectively and try > ;.

Exercise 49 (central tutorial)

For solving problems in perturbation theory and initial value problems the Green’s function plays an im-
portant role. It is defined as the solution to the equation

H,G(z,y) =0(z —y) (1)
where H, is a linear operator acting on . We want to calculate the Green’s function of a massive particle.
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(i) The Hamiltonian of the free particle is given by Hy = 2%' Choose z € C such that Hy — z has an

inverse defined as <§‘ (Hy — 2)(Hy — )" ‘§’> = §(x — 2/). Prove that (Hy — z)~! satisfying

is the inverse of Hy — z. )
(Use that (z|p) = (27h)~/2e P where d is the dimension of z and p.)

(i) (Ho —z)~!is called the resolvent of Hy. Show that for d = 3 one has
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(iii) For which values of m and z is (3) a Green’s function of the linear operator —A + k2.
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(iv) By taking the limit z — 0 we get a Green’s function for H,. However in certain cases one encounters
singularies when taking this limit. One example is the one dimensional resolvent of Hy. Derive the
analogue of (3) for d = 1.

(v) By taking the limit z — 0 a singularity arises. In order to avoid that define:
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Which conditions do the coefficients A4;(z,y) have to fulfill such that G(z,y) converges and is a Green’s
function of Hy?



(vi) Consider the one dimensional electrostatic problem

2¢(x
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¢(z) =0 for v — —oc0 (5)

L]. Derive an integral expression for ¢(x) which solves (5).

where f(z) has compact support on [0,
5) fixes the remaining free parameter Ag. What is the physical

Show that the boundary condition in (
interpretation of this model?

Exercise 50

Using the definitions given in the lecture, calculate the differential cross section 92 and the total cross section

aq
oot for the Yukawa potential:
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Check your result by taking the limit @ — oco. For the differential cross section you should get the Rutherford
cross section.

Exercise 51 (central tutorial)

Consider the Hamiltonian H = Hy + V = % + Ad(x). The eigenstates | k) with eigenvalue % of this
Hamiltonian are given by
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where | l_€> are the eigenstates of the free Hamiltonian with <x | l_c> = \/g?he%rk.

(i) Using the result for the resolvent in one dimension from Exercise 49 calculate (z | k).

(ii) |k) as a function in k has a simple pole. Find the position kg of this pole and evaluate the residue
| U) := Resg—k, {| k)} of it.

(iii) Show that for A < 0, | ¥) is a bound state (normalizable eigenstate) of H.

(iv) Extract the transmission and reflection coefficients from the explicit expression of | k).

Exercise 52
Consider the Hamiltonian H = % + V in one dimension where the potential is given by

0 for x <0
Vie) = { Vo forxz>0 (8)

(i) Make the following ansatz for the wave function ¢ (x)

Aetf1® 4 Be=R1iT  for g < ()
Y(z) = { Cetk2® | De—h2®  for £ > () ®)

and solve the time independent Schrodinger equation to get expressions for ky and ko.

(ii) By matching the boundary conditions lim ¢ (z) = lim t¥(z) and lim ¢'(z) = lim ¢'(x) find a
z—0F z—0~ z—0t z—0~

relation between the coefficients A, B, C and D. Why do these boundary conditions make sense?

(i) Find the transmission and reflection coeflicient for a wave coming from —oo.



