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Exercise 43

Consider the Lagrangian for a driven harmonic oscillator in one dimension

L(q, q̇, J(t)) =
ṁq2

2
− mω2

2
q2 + J(t)q, (1)

with ω being a constant and J(t) being a time dependent driving force.

(i) Derive expressions for the conjugate momentum p and the Hamiltonian H of the system.

We now quantize the system by promoting q and p to operators q̂ and p̂, respectively. These operators satisfy
the usual commutation relation.

(ii) Write the Hamiltonian in terms of creation and annihilation operators â and â†.
Hint: Recall your results from Question 22.

(iii) Find the equations of motion for the the operators â and â†, respectively. They should have the form

d ŷ(t)

dt
+A(t)ŷ(t) = B(t),

where y(t) represents â(t) or â†(t).

(iv) Assuming the driving force satis�es J(t < 0) = 0, solve the equations of motion.
You may assume that the solution has the form

y(t) = (C0 + C(t)) exp

(
−
∫
A(t)dt

)
,

�nd C(t) and then �x C0 with the boundary condition at t = 0 arising from J(t < 0) = 0.
Remark: The general form of the solution can be derived using the method of variation of constants.

Given that the operators â and â† act on the �n-particle� state |n〉 as

â |n〉 =
√
n |n− 1〉 and â† |n〉 =

√
n+ 1 |n+ 1〉 , (2)

we can de�ne a number operator N̂ = â†â such that N̂ |n〉 = n |n〉.

(v) Find the vacuum expectation value of the number operator,
〈

0
∣∣∣ N̂ ∣∣∣ 0〉, where the vacuum is de�ned

by â0 | 0〉 = 0 and â0 is the annihilation operator of the free harmonic oscillator. Comment on your
result.

Exercise 44

(i) Prove the following n-dimensional Gaussian integration formula:

I =

∫
Rn

exp

[
−1

2
xTAx+ bTx+ c

]
dnx =

√
(2π)n

detA
exp

[
1

2
bTA−1b+ c

]
. (3)

Here A is a symmetric positive de�nite n× n matrix.

(ii) Show that the argument of the exponential in the result is the extremal value of the exponent in the
integrand.



Exercise 45 (central tutorial)

In this problem we will evaluate the propagator of the harmonic oscillator using the path integral. The
Lagrangian is

L =
1

2
mq̇(t)2 − 1

2
mω2q(t)2

and the path integral that we are going to compute is

K(qF , T ; qI , 0) =

∫
q(0)=qI
q(T )=qF

Dq(t) exp

[
i

~

∫ T

0

dt

(
1

2
mq̇(t)2 − 1

2
mω2q(t)2

)]
. (4)

The �nal answer that we should �nd is

K(qF , T ; qI , 0) =

√
mω

2πi~ sinωT
exp

[
imω

2~ sinωT

(
(q2
I + q2

F ) cosωT − 2qIqF
)]
. (5)

We will work directly in the continuum limit, integrating over all paths. The main fact that we are going to use
is that for harmonic oscillator the integral (4) is Gaussian (exponential of a quadratic function of integration
variables), so that we will be able to use the continuous generalization of the Gaussian integration formula
(see Exercise 44) ∫

Rn

dnx exp

[
−1

2
xTAx+ bTx+ c

]
=

√
(2π)n

detA
exp

[
1

2
bTA−1b+ c

]
valid for A a positive de�nite symmetric matrix A and b an arbitrary real vector. In our continuum compu-
tation we will have to determine the analogue of the exponential factor on the right hand side and of the
determinant detA.

(i) To determine the stationary point, �nd the stationary path q0(t) of the action (there will be only one),
i.e. solve the classical Euler-Lagrange equations with boundary conditions q(0) = qI and q(T ) = qF .
You should get

q0(t) =
1

sinωT
(qF sinωt+ qI sinω(T − t))

The result is singular for ωT = πn, n ∈ N - explain the origin of these singularities.

(ii) Evaluate the classical action at the stationary point. The result should reproduce the exponential factor
of the �nal result (5).

(iii) It remains to evaluate the prefactor, in particular we should understand a continuous generalization
of the determinant detA. This determinant comes from integrating over the quadratic �uctuations
around the stationary path. We make a shift of the integration variable

q(t) = q0(t) + δq(t).

where q0(t) is the stationary point found previously and δq now satis�es the boundary conditions
δq(0) = 0 = δq(T ). Why? What is the Jacobian of this change of integration variable? Show that the
action is now

S[q(t)] = S[q0(t)]− m

2

∫ T

0

δq(t)
[
∂2
t + ω2

]
δq(t)

(why there is no term linear in δq?) so that we need to �nd the determinant of the operator

Aω = −∂2
t − ω2 (6)

acting in the space of functions which satisfy δq(0) = 0 = δq(T ).

(iv) Find the eigenfunctions and eigenvalues of (6). The determinant should be their product. Show that
this is formally

detAω =

∞∏
k=1

(
π2k2

T 2
− ω2

)
which is divergent as k →∞. But the ratio of these two formal expressions at di�erent values of ω is
convergent. Using the product formula for sine function

sinπz

πz
=
∏
n>0

(
1− z2

n2

)



show that

det(Aω) =
Ω det(AΩ)

sin ΩT

sinωT

ω
.

(v) In this way, we evaluated the functional integral (4) up to an ω-independent prefactor. Fix this prefactor
by comparing the ω → 0 limit of the result to free particle propagator

Kfree(qF , T ; qI , 0) =

√
m

2πi~T
exp

[
−m(qF − qI)2

2i~T

]
The result you should �nd is (5).

Exercise 46

There is another way to determine the prefactor of the harmonic oscillator propagator using the property of
composition of two propagators

K(qF , T1 + T2, qI , 0) =

∫ +∞

−∞
K(qF , T1 + T2, q, T1)K(q, T1, qI , 0)dq. (7)

Parametrize the propagator of the harmonic oscillator as

K(qf , T, qI , 0) = A(T ) exp

[
imω

2~ sin(ωT )

(
(q2
I + q2

F ) cos(ωT )− 2qIqF
)]

(8)

and show that the composition property implies an equation for the prefactor

A(T1 + T2) = A(T1)A(T2)

√
2πi~ sin(ωT1) sin(ωT2)

mω sin(ω(T1 + T2))
(9)

which determines the prefactor to be

A(T ) =

√
mω

2πi~ sin(ωT )
. (10)

Exercise 47 (central tutorial)

In this problem we want to extract wave functions and energies of the harmonic oscillator from the propagator
that we calculated using the path integral.

(i) Find the Euclidean propagator (unnormalized density matrix) of the harmonic oscillator by analytic
continuation T → −i~β where β is the inverse temperature.

(ii) What is the leading order low temperature behavior as β →∞? It is convenient to introduce a variable
α = e−~βω such that α→ 0 as β →∞.

At this point, the Euclidean propagator expressed in terms of α should look like

K(qF ,−i~β, qI , 0) = α
1
2

√
mω

~π(1− α2)
exp

[
− mω

~(1− α2)

(
(q2
I + q2

F )
1 + α2

2
− 2qIqFα

)]
. (11)

(iii) Read o� the spectrum of the Hamiltonian from the previous expression. The (unnormalized) density
matrix should have an expansion of the form

K(qF ,−i~β, qI , 0) =

∞∑
n=0

α
1
2 +nfn(qF , qI). (12)

Interpret the quantities fn(qF , qI) in terms of eigenfunctions of the Hamiltonian.

(iv) For one-dimensional quantum mechanical problems with discrete spectrum the wave functions can be
chosen to be real. Detemine the ground state wave function from the leading order coe�cient of K as
β →∞.

(v) Determine the wave function of the �rst excited state.

(vi) Show that for the harmonic oscillator we have in general

ϕn(qF )ϕ∗n(qI) = lim
β→∞

1

n!

(
− 1

~ω
e~ωβ

d

dβ

)n [
e

1
2~ωβK(qF ,−i~β, qI , 0)

]
. (13)


