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Problem Set 3: Kubo formula, free energy of Fermi gas

Exercise 1. Kubo formula: Conductivity in a weak external electromagnetic field

We consider N particles in an external electromagnetic field (¢, A) described by the Hamil-
tonian

N
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where we use the notation O = (O, Oy, 0.)T.

(a) Consider the following first-quantized operators,
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where p; = —iVy,, and the current j 4(x) is composed of a paramagnetic and diamagne-
tic contribution, j,(x) = j(x) — %ﬁ(X)A. The latter is responsible for the diamagnetic
effect occuring in the presence of an external magnetic field in diamagnetic materials.
In paramagnetic materials the former contribution dominates the current.

Rewrite H such that the parts linear in the external fields couple to j4(x) and 7 (x).

(b) Show that the linear response of (j,(x,t)) to an external electromagnetic perturbation
(¢, A) is given by
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with the retarded susceptibilities
X (X = Xt =) = —iO(t — ') ([ (x, 1), 1, (x',1)]), (6)
Xjun(x =Xt =) = —iO(t = ') ([, (x, 1), 2 (<, )]). (7)

Here, the superscript Hy on an operator indicates that its time dependence is given in
the interaction picture, i.e., w.r.t. the unperturbed Hamiltonian.
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(¢) Now, we choose the gauge ¢ = 0 and consider a particle in a spatially constant external
electric field of the form E = —%@A

Show that (ja,(w)) = 0 |p=o(w)E,(w), where p denotes momentum and
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Exercise 2. Matsubara sums

The Matsubara technique usually requires calculating sums of the type

1
S == Fiw,), 9
§3 i) ©
where F(z) has simple poles at z = z;, where Re(z;) # 0, and residues R(z;). In this exercise,
we recall a useful technique for this, which is based on rewriting the sum as a contour integral.
(a) Consider the function (¢ € {+1})

ne(z) = !

exp(8z) — ¢

What is its pole-structure (i.e., where are its poles and what are the residues)?
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(b) Use this to transform S into a contour integral over n¢(z)F(z).

(c¢) Assume that F' vanishes sufficiently quickly for |z| — oo and deform the contour. Then,
take a clever deformation of the contour to pick up the contributions from the poles of
F. Use this to show

S = —CZnC(zi)R(zi). (11)

Exercise 3. Free energy of non-interacting fermions

The free energy of a Fermi gas described in the grand canonical ensemble reads

F=-2InTr[p ——Zln [1+ exp (—8&,)], (12)

where &, = ¢, — p. Let us calculate the free energy for a Fermi gas in a continuum approach
as well as from a discretized field integral.

a) In the continuum apprt OCLCh, a system of non-interacting fermions is described by the
g
action
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with Grassmann fields ¢, (7). Perform a discrete Fourier transformation using Matsubara
frequencies to show that

F=-1lnz= ——Zln —itwn + &) (14)



(b) In order to evaluate the Matsubara frequency summation we introduce the auxiliary
function n(z) = exp(ﬁ—zﬂ from Ex. 2 and consider h(z) = In[—z + &]. Assume that due

to a suitable regularizer exp (i0" z), we can achieve that the contour integral for the sum
>, In[B(—iw, 4+ &)] vanishes at the perimeter. Determine an integral expression for the
above Matsubara sum and derive Eq. (12).

(¢) The discretized field integral does not require any trick or regularization. We consider
a discretized imaginary time axis with steps 7; = j% with 0 < j < N —1 and 07; =
Tj — Tj—1 = % The Fourier transform is then

N-1 N-1
1 4 .
Vrj = 3 > exp(—iw ) Yk = C ) expliwT; )i ;. (15)
1=0 =0

What is C?7 Determine a discretized form of the action for non-interacting electrons in
the Matsubara representation. Derive the partition sum

= 1;[ g [1 — exp (iwl%> + %Ek exp (M%)} : (16)

Contrary to the expression in Eq. (14), this result is already regular. What is the origin
of the regularizer that arises naturally in the discrete-integral approach?

(d) We can decompose the partition sum as
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where 2% (6) = [T, [1 — exp (zwlN)] and W, = exp (—in2£L). Compute the first term

and show that In Z%(8) = In2. Hint: Use szzo sin (22 + z) = 2!V sin (N2).

(e) The sum over [ in Eq. (17) contains values for W, on the unit circle in discrete steps of
exp (—i27L). We can thus split the sum as (1 < A < N)
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Perform the sum ZL by expanding the argument of the logarithm for large N and using
COShJI = Hk 1 [1 + W]

The denominator of Z has no singularity, and, for large IV, the step size = 2” is small.

We therefore replace the sum by an integral. Evaluate the integral by expandmg the
logarithm for large N, and show ZH ~ —[E/2.

Combine these results to identify the expression from Eq. (12).

Discussion of the problem set on Nov. 5, 2019.



