Priv.-Doz. Dr. Ralph Blumenhagen Ludwig—Maximilians—Universitat Miinchen

Exercises for Conformal Field Theory (MD4)
Problem set 7, due December 11, 2019

If you have questions write an E-mail to: mtraube@mpp.mpg.de

1 The Poisson Resummation Formula

To show the modular invariance of e.g. the partition function of free boson on a circle one needs the Poisson
resummation formula
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Its key property is to invert the prefactor which is needed to compute the behavior under a modular S-
transformation. You are asked to verify this formula in two different ways:

A) Use the discrete Fourier transform of the Dirac comb )" §(xz —n)
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B) The inversion property of the Poisson resummation formula is of course well known from the Fourier
transformation. Indeed one can easily check that both sides in (1) are connected by a Fourier trans-
formation. This hints that the above formula is a corollary of the more general formula

Z f(n) = Zf(k), where f(z) = /jo F()e?™= da.

nez keZ

Prove that this formula holds for any test function f. Do not use the Dirac comb method again!

Hints: At some place you might need a shift by ie. Furthermore any test function f has a Riemann-
Hilbert decomposition f(z) = fi(z) + f—(2) where fi(2) is analytically (singular freely) extendable to
the upper/lower plane.

2 The Free Boson on a Circle of Radius R = v/2k

You have learned in the lecture that the partition function of a free boson on a circle of radius R = v2k
where k € Zt can be written as

Zr = —— S Oms)l - 3)

The O functions are defined as

O k(1) = Z qk"27 —k+1<m<k. )
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(This is the generalized © function from the last sheet when ignoring the angular momentum dependence.)

A) Compute the transformation property of the © function under a modular S-transformation. Write it
in the form

k
Omk = V=T Y SO k(7). (5)
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B) Explain why the matrix S in (5) is really the modular S matrix. To do so state the characters Xsylf) of
the theory and write their transformation law using (5).

C) Take a character ng) and expand it in powers of ¢. Deduce the conformal dimension of the highest
weight corresponding to the character.

Note: Ezercise B) and C) can be done without the solution of exercise (i). Everything you computed in this
exercise will reappear in N = 2 superconformal field theories since their minimal models can be written as
cosets with several u(1)y factors.



