Determinants and GraBBimann numbers

Determinants of operators can formally be written as (path) integrals over some
auxiliary variables. In order for this to be possible, these auxiliary variables
have to be anti-commuting rather than ordinary commuting numbers. Two anti-
commuting numbers (or Graffimann numbers) 6 and 7 satisfy

On = —nb (1.1)

and hence 62 = 0. Because of this, the most general function of one Grafimann

variable 6 is
f(0)=A+ B (1.2)

with A, B € C. Integrals over Gralmann variables (“Berezin integrals”) are
defined by

/dG(A + BO):=B. (1.3)
Defining the derivative
d d
@9—1, @A—O7 (AeC), (1.4)

the Berezin integral of a total derivative is zero and the Berezin integral is
translation invariant, i.e.,

d
/dH@f(H) = 0, (1.5)
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Proof: Let f(0) = A+ B with A, B € C. Then

/d@d%f(e) = /ded%(A+39) (1.7)
_ /d0 (jeAJr(jeB)9+Bj90> (1.8)

/daB =0 (1.9)

Moreover, f(0 + a) = A+ Ba + Bf. Thus,

/daf(e+a) = /de(A+Ba+Be)=B=/d9f(9). (1.10)

The properties (1.5) and (1.6) mimic similar properties of ordinary integrals
of the type [ fooo dx f(x), which is the motivation for the unusual definition (1.3).
Note that, for Grafimann variables, integration and differentiation are equivalent
operations.

If one has several linearly independent Grafimann variables §; (i = 1,...,n),

where
Vij: 0i; =—0,0;, (1.11)



one defines
/d91 L dOnf(0) =c, (1.12)

where ¢ is the coefficient in front of the 6,,0,,_1 ...61-term in f(6;) (note the
order):

Now say we have n GraBmann variables 1; and n other independent Graf-
mann variables x;. Then one can easily show that

/( ﬁ d¢mdxm)622:1 XeAk¥r ﬁ A (1.14)
m=1

m=1

where A, € C are ordinary c-numbers and the exponential is defined via its
power series expansion.
Proof:
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Formula (1.14) implies

/ (TT dabndca J b xeev — det A (1.16)
m=1

for a symmetric n X n matrix A with eigenvalues A,
Proof: As A is symmetric, it can be diagonalized via an orthogonal matrix, i.e.

Ap = ZMskMsl)\s (1.17)

s=1

with A, the eigenvalues of A. The matrix M is orthogonal, i.e. M~! = M7 and
DetM = £1. Now one has
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(1.18)
Set
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or equivalently (M~ = MT)
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Then one has
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Formula (1.14) should be compared with the result of the integral over com-
muting numbers @, B, (m=1,...,n), with A, € R, for which one can show

n

/OO ( H Aot dfy, )2 i e — T 1 (1.22)
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This follows simply from

/ da/ dperP = 27?/ dad(Aa) = 2; . (1.23)

The fact that one can invert the result of a Gaussian integral by replacing
the commuting variables by Grafmann valued variables, carries over to path
integrals. This is commonly used in QFT where fermionic path integrals are
used to express the determinant of a differential operator. For instance, formula
(1.16) can be generalized to the context of a path integral over Graiman valued
fields ¥ (x), x(z), resulting in

/ DyDy el XA — et A | (1.24)

where A is some self-adjoint differential operator. This can be seen as follows.
The fields ¢ (z) and x(z) can be expanded in (c-number valued) eigenfunctions
U;(x) of A with Grafimann valued coefficients ¢; and x;, i.e.

Y(x) = Z%\I’z(x) ; x(x) = sz\lfz(:v) ;
The eigenfunctions can be chosen in an orthonormal way, i.e.
[ aPowitayu; @) =5 (1.26)

and the measure can be defined as DYDy = [[, diidx;.
Analogously to (1.24) one has for commuting fields ¢ and ¢

/ D1 Dy 2™t S 7201802 — (det A)7L (1.27)
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