
Determinants and Graßmann numbers

Determinants of operators can formally be written as (path) integrals over some
auxiliary variables. In order for this to be possible, these auxiliary variables
have to be anti-commuting rather than ordinary commuting numbers. Two anti-
commuting numbers (or Graßmann numbers) θ and η satisfy

θη = −ηθ (1.1)

and hence θ2 = 0. Because of this, the most general function of one Graßmann
variable θ is

f(θ) = A+Bθ (1.2)

with A,B ∈ C. Integrals over Graßmann variables (“Berezin integrals”) are
defined by ∫

dθ(A+Bθ) := B . (1.3)

Defining the derivative

d

dθ
θ = 1 ,

d

dθ
A = 0 , (A ∈ C) , (1.4)

the Berezin integral of a total derivative is zero and the Berezin integral is
translation invariant, i.e.,∫

dθ
d

dθ
f(θ) = 0 , (1.5)∫

dθf(θ + a) =

∫
dθf(θ) , for a ∈ C . (1.6)

Proof: Let f(θ) = A+Bθ with A,B ∈ C. Then∫
dθ

d

dθ
f(θ) =

∫
dθ

d

dθ
(A+Bθ) (1.7)

=

∫
dθ

(
d

dθ
A+ (

d

dθ
B)θ +B

d

dθ
θ

)
(1.8)

=

∫
dθB = 0 (1.9)

Moreover, f(θ + a) = A+Ba+Bθ. Thus,∫
dθf(θ + a) =

∫
dθ(A+Ba+Bθ) = B =

∫
dθf(θ) . (1.10)

The properties (1.5) and (1.6) mimic similar properties of ordinary integrals
of the type

∫∞
−∞ dxf(x), which is the motivation for the unusual definition (1.3).

Note that, for Graßmann variables, integration and differentiation are equivalent
operations.

If one has several linearly independent Graßmann variables θi (i = 1, . . . , n),
where

∀i,j : θiθj = −θjθi , (1.11)
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one defines ∫
dθ1 . . . dθnf(θi) = c , (1.12)

where c is the coefficient in front of the θnθn−1 . . . θ1-term in f(θi) (note the
order):

f = . . .+ cθnθn−1 . . . θ1 . (1.13)

Now say we have n Graßmann variables ψi and n other independent Graß-
mann variables χi. Then one can easily show that∫ ( n∏

m=1

dψmdχm

)
e
∑n

k=1 χkλkψk =

n∏
m=1

λm , (1.14)

where λm ∈ C are ordinary c-numbers and the exponential is defined via its
power series expansion.
Proof:∫ ( n∏

m=1

dψmdχm

)
e
∑n

k=1 χkλkψk =

∫
dψ1dχ1 . . . dψndχn

[
1 + . . .+

1

n!

( n∑
k=1

χkλkψk

)n]

=

∫
dψ1dχ1 . . . dψndχn

1

n!

( n∑
k=1

χkλkψk

)n
=

∫
dψ1dχ1 . . . dψndχn(χnλnψn) . . . (χ1λ1ψ1)

=

n∏
m=1

λm . (1.15)

Formula (1.14) implies∫ ( n∏
m=1

dψmdχm

)
e
∑n

k,l=1 χkΛklψl = det Λ , (1.16)

for a symmetric n× n matrix Λ with eigenvalues λm.
Proof: As Λ is symmetric, it can be diagonalized via an orthogonal matrix, i.e.

Λkl =

n∑
s=1

MskMslλs (1.17)

with λs the eigenvalues of Λ. The matrix M is orthogonal, i.e. M−1 = MT and
DetM = ±1. Now one has∫ ( n∏

m=1

dψmdχm

)
e
∑n

k,l=1 χkΛklψl =

∫ ( n∏
m=1

dψmdχm

)
e
∑n

k,l,s=1 χkMskMslλsψl .

(1.18)
Set

n∑
k=1

Mskχk = φs ,

n∑
l=1

Mslψl = θs , (1.19)

or equivalently (M−1 = MT )

χk =

n∑
s=1

Mskφs , ψl =

n∑
s=1

Mslθs . (1.20)
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Then one has∫ ( n∏
m=1

dψmdχm

)
e
∑n

k,l=1 χkΛklψl

=

∫ ( n∏
m=1

( n∑
k,l=1

MkmMlm

∫
dθkdφl

)
e
∑n

s=1 φsλsθs

=

n∑
ki,li=1

(Mk11Ml11) . . . (MknnMlnn)

∫
(dθk1dφl1) . . . (dθkndφln)e

∑n
s=1 φsλsθs

=

n∑
ki,li=1

(Mk11Ml11) . . . (MknnMlnn)εk1...knεl1...ln

∫
(dθ1dφ1) . . . (dθndφn)e

∑n
s=1 φsλsθs

= (DetM)2
n∏
s=1

λs =

n∏
s=1

λs = DetΛ . (1.21)

Formula (1.14) should be compared with the result of the integral over com-
muting numbers αm, βm (m = 1, . . . , n), with λm ∈ R, for which one can show∫ ∞

−∞

( n∏
m=1

dαmdβm

)
e2πi

∑n
k=1 αkλkβk =

n∏
m=1

1

λm
. (1.22)

This follows simply from∫ ∞
−∞

dα

∫ ∞
−∞

dβeiλαβ = 2π

∫ ∞
−∞

dαδ(λα) =
2π

λ
. (1.23)

The fact that one can invert the result of a Gaussian integral by replacing
the commuting variables by Graßmann valued variables, carries over to path
integrals. This is commonly used in QFT where fermionic path integrals are
used to express the determinant of a differential operator. For instance, formula
(1.16) can be generalized to the context of a path integral over Graßman valued
fields ψ(x), χ(x), resulting in∫

DψDχ e
∫
dDxχ∆ψ = det ∆ , (1.24)

where ∆ is some self-adjoint differential operator. This can be seen as follows.
The fields ψ(x) and χ(x) can be expanded in (c-number valued) eigenfunctions
Ψi(x) of ∆ with Graßmann valued coefficients ψi and χi, i.e.

ψ(x) =
∑
i

ψiΨi(x) , χ(x) =
∑
i

χiΨi(x) ,

∆Ψi(x) = λiΨi(x) . (1.25)

The eigenfunctions can be chosen in an orthonormal way, i.e.∫
dDxΨi(x)Ψj(x) = δij , (1.26)

and the measure can be defined as DψDχ =
∏
i dψidχi.

Analogously to (1.24) one has for commuting fields φ1 and φ2∫
Dφ1Dφ2 e

2πi
∫
dDxφ1∆φ2 = (det ∆)−1 . (1.27)
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