Übung zur Vorlesung T4, Anwesenheitsaufgaben 4

08.11.2019

1. TD Potentiale und Photonengase (TD potentials and photon gases)

Betrachten Sie ein Photonengas. Die Zustandsgleichungen lauten

$$U = \sigma T^4 V, \quad p = \frac{\sigma}{3} T^4 \ .$$

Im Gegensatz zu gewöhnlichen Gasen tritt die Teilchenzahl nicht als Parameter in den Zustandsgleichungen auf. σ ist eine Konstante. (Vorüberlegung: Welche Einheit?) (Consider a photon gas. The equations of state are given above. Note that, in contrast to regular gases, the number of particles does not appear in the equations of state. σ is a constant (think about which unit σ has).)

a) Zeigen Sie (Show)

$$dS = \frac{1}{T} \left(\left(\frac{\partial U}{\partial T} \right)_V dT + \left[\left(\frac{\partial U}{\partial V} \right)_T + p \right] dV \right) .$$

- b) Bestimmen Sie S(T, V) unter Verwendung der Zustandsgleichungen und Teil a). (Find S(T, V) using the equations of state and part a).)
- c) Bestimmen Sie nun U in Potentialform, d.h. U(S, V). (Now find U as a TD potential, i.e. U(S, V).)
- d) Bestimmen Sie die freie Energie F(T,V) durch Legendre-Transformation. (Find the free energy F(T,V) using a Legendre transformation.)
- e) Überzeugen Sie sich, dass Sie aus F(T,V) die Zustandsgleichungen zurückerhalten können. (Show that you can rederive the equations of state from F(T,V).)

2. Wahrscheinlichkeit und Radioaktivität (Probability and radioactivity)

Betrachten Sie die folgende Wahrscheinlichkeitsdichte:

$$p(t) = \begin{cases} \tau^{-1} e^{-\frac{t}{\tau}} & t \ge 0\\ 0 & t < 0 \end{cases}$$

Physikalisch können Sie sich zum Beispiel vorstellen, dass eine radioaktive Quelle durch eine Blende von einem Detektor getrennt ist. Zum Zeitpunkt t=0 wird die Blende geöffnet. p(t) ist die Wahrscheinlichkeitsdichte für die Zeit, die vergeht, bis das erste Ereignis vom Detektor gemessen wird.

(Consider the probability density above. One physical realisation is a radioactive source behind a barrier. At t = 0, the barrier is removed. p(t) is the probability density for the time it takes until the first decay particle is detected.)

- a) Überprüfen Sie, dass p(t) korrekt normiert ist. (Verify that p(t) is normalised.)
- b) Bestimmen Sie die zugehörige kumulative Wahrscheinlichkeit. (Find the respective cumulative distribution function.)
- c) Bestimmen Sie die kumulative Wahrscheinlichkeit für die Zufallsvariable F mit $F(t) = t^2$. (Find the cumulative distribution function for the random variable F which is given by $F(t) = t^2$.)
- d) Berechnen Sie daraus die Wahrscheinlichkeitsdichte für F. (Use c) to find the probability density for F.)