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Exercise 1 Light-Matter interaction: Back to Numerics

Consider a onedimensional array of M coupled electromagnetic cavities for which the
dispersion relation reads ω(k) = A + B cos(kh). In addition, assume two atoms located
in different cavities which are coupled via the electromagnetic field modes such that the
Hamiltonian of the full system is given by
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with r1 = hn1 and r2 = hn2 are the two atomic locations, with n1 and n2 integer numbers
that we can change, and the discretization:

k = k(q) = −π
h

+ (q − 1)dk , dk =
2π

hM
, and 1 ≤ q ≤M .

Assume that the atoms (the system (S)) can be treated as two-level systems with internal
states given by {|0〉j, |1〉j}.

1. Treating the electromagnetic field as the environment, obtain the shape of the
corresponding environment correlation function CE(t), and express it in terms of
the spectral function, for an environment initial state given by the vacuum state:
ρE = |vac〉〈vac|, and for the thermal state ρthE = exp(−βHE)/Z; Z being the par-
tition function and β = 1/κT the inverse of the temperature. Plot Re{CE(t)} for
M = {100, 500}, h = 1, β = 1, A = 100, B = 50, g = {0.1, 0.5}.

2. Let us consider the environment in a vacuum state, ρE = |vac〉〈vac|, and the two
atoms at different positions, with initial states such that one of them is in the exci-
ted state while the second is in its ground one. Compute the atom-atom correlation
function C12(t) = tr{σx1 ⊗ σx2 ρs(t)}. Discuss the dependency of the atom-atom cor-
relation function on the separation |n1 − n2| = 0, 1, 2, 3 between the atoms. (Fix
M = 100, ω1 = ω2 = 55 and ω1 = ω2 = 49 and the rest of the parameters as in the
previous item).

3. Given that the entire setup is a three-partite system, i.e., Atom+Atom+Environment,
compute, and plot as a function of time, the entanglement entropy (von Neu-
mann entropy) between the atoms for the same initial state as in item 2 and
ω1 = ω2 = 55. Compare and discuss the results for entanglement entropy with
the one for the correlation function in item 2 when |n1 − n2| = 1. What happens
if we consider an entangled initial state between the atoms, i.e., an initial state
|ψat〉 = (|0〉1|1〉2 + |1〉1|0〉2) /

√
2?

4. Discuss item 3. in the case that the energies of the atoms are in taken within the
gap.



... One-excitation sector: a follow up:

5. For the same situation as in items 3, and 4, compute the quantum mutual information
for atoms 1 and 2

I(1 : 2) := S(ρ1) + S(ρ2)− S(ρ12), (2)

where ρj (j = 1, 2) is the reduced density matrix of each atom, and ρ12 is the reduced
density matrix of both of them, while S(ρ) = −Tr{ρ log ρ} is the von Neumann
entropy. Analyze how the mutual information is affected by the environment in the
two cases under analysis, when ω1 = ω2 = 55 and ω1 = ω2 = 49, and for |n1 − n2| =
0, 1, 2, 3. When is the mutual information more affected by the environment, when
atoms are at closer or farther away?

6. In the same context, consider now imperfections in the setup of our system in such
a way that atoms are located at positions r1 = hn1 + δh1 and r2 = hn2 + δh2,
where δhj is a location variation due to fabrication defects, δhj/h� 1. Assume that
err = {δh1, δh2} is a set of random numbers and compute the atom-atom correlation
function defined in the item 2 for |n1 − n2| = 1, 2, 3. (Keep in mind that an average
over many realisations is needed, therefore use up to 100 sets err). Compare your
results with the one in item 2, i.e. without fabrication errors.

7. Fidelity measure: Consider an initial state for the two atoms given by |ψat〉 =
(|0〉1|1〉2 + |1〉1|0〉2) /

√
2, and the environment initial state defined as the vacuum.

Compute the fidelity of the system initial state defined as
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for the same parameters as in the previous items. Can we, from these analysis, infer
the loss of the entanglement of the initial state?

... Now consider only one atom:

8. In this exercise, we compare the results obtained with the Markov and secular ap-
proximations, leading to the Lindblad equation, with the exact ones that we have
obtained by solving the problem in the one excitation sector. We consider as usual
M = {100, 500}, A = 100, B = 50. In detail:

a.) Derive a Lindblad master equation using the perturbative expansion, as well as
the Markov and secular approximations as explained in class. Please specify and
justify the steps and approaches used.

b.) Compare the result from the master equation and the exact one (diagonalize
the full Hamiltonian and compute the same as in the previous item) for g =
0.05, 0.1, 0.5.

9. Consider now the exact master equation of the problem, which we obtained in the
Exercise Sheet 4, i.e.
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Use the function γ(t) to study the non-markiovianity of the dynamics. Represent
the non-Markovianity with respect to values of ω1 ∈ [45, 55], so that we can analyze
this quantity in the band-gap edge that is located at ω1 = 5. Where is the non-
Markovianity higher? Discuss the results!

... Beyond the one-excitation sector:

10. Consider again only one atom, but this time assume that the environment is initia-
lized in a thermal state. This implies that we will no longer be able to describe the
problem within the one excitation sector, since the initial thermal state will contain
more than one excitation. We consider as usual M = {100, 500}, A = 100, B = 50.

• Similar to Item 1, compute the environment correlation function and represent
its real part for different values of the inverse temperature, β = 0, 1, 0.5, 1, 10.
How does the decay time of the correlation function, also known as correlation
time, change with the temperature?

• Obtain the Lindblad master equation considering such an initial thermal state
for the environment, and integrate it numerically.

• What is the expression of the decay rates of the Lindblad master equation, as
given by the Fermi Golden rule?

• The decay rates depend on the spectral density of the environment. Compute
this function for the present system. Where is the spectral density larger, nearby
the band-gap edge or in the middle of the band?

• The steady state of the Lindblad master equation is known to be the thermal
state ρthS = e−βHS/ZS, i.e. the system is expected to thermalize under such
equation. Compute and represent the trace distance between the time evolving
ρs(t) and ρthS = e−βHS/ZS for different values of ω1 = 45, 49, 50, 51, 55. Chose a
temperature β = 1. Does the system thermalize in all cases? Assume that the
initial state of the system is the excited state ρS(0) = |1〉〈1|. What happens
when the system is initialized in a thermal state?

• For ρS(0) = |1〉〈1|, represent the thermalization time (defined at the time in
which the trace distance between ρS(t) and ρthS is smaller than 10−3) for: (a)
ω1 = 55 and β ∈ [0.1, 1] with a discretization ∆β = 0.125., and (b) β = 1 and
ω1 ∈ [50, 55] with a discretization ∆ω = 0.25. How does the thermalization time
behave with the temperature? what is the reason? When is the thermalization
time faster, near the band-gap edge or farther away from it, and why?


