
Vorlesung Biophysik Braun - Neurronale Netze

Overview:
- Anatomy of Neuronal Networks
- Formal Neural Networks
- Are they realistic?
-  Oscillations and Phase locking
- Mapping problem: Kohonen Networks

Neural Networks
Nice books to start reading:
e.g. Manfred Spitzer: Geist im Netz
Brick-like text-books:
From Neuron to Brain by John G. Nicholls, John G.
Nicholls, Bruce G. Wallace, Paul A. Fuchs, A. Robert
Martin
Principles of Neural Science by Eric R. Kandel, James
H. Schwartz, Thomas M. Jessell
Models of Neural Networks I-III, Domany, van Hem-
men, Schulten, Springer 1991,1995
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The brain mostly consists NOT of neu-
rons, there are about 10-50 times more
glia (greek: “glue”) cells in the central
nervous tissue of vertebrates.

The function of glia is not understood in
full detail, but their active role in signal
transduction in the brain is probably
small.

Electrical and chemical synapses allow
for excitatory or inhibitory stimulation.
They most often sit at the dendritic tree,
but some also at the surface of a neuron.

In many neuron types, these inputs are
can trigger an action potential in the
axon which makes connections with
other dendrites.

However, only recently, it was found, that
action potentials also travel back into
the dendritic tree, a crucial prerequisite
for learning.

Neuroanatomy

From: Principles of Neural Science
Kandel, Schwartz, Jessel, 1991
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Neuroanatomy
The brain consists of about 1011 neurons,
divided into approx. 10,000 cell types with
highly diverse functions.

The cortex,  the outer “skin” of the brain,
appears to be very similar all over the brain,
only more detailed analysis also shows here spe-
cialization in different regions of the cortex. 

Most of the brain volume are “wires” in the
white matter of the brain.

From: Principles of Neural Science
Kandel, Schwartz, Jessel, 1991
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Cortex Layers
The Cortex is organized into
layers which are numbered
from I to VI.

Different types of cells are
found in the layers.

The layer structure differs for
different parts of the brain.
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Cortex Layers
I. Molecular layer: few scat-
tered neurons, extensions of
apical dendrites and horizon-
tally oriented axons.
II. External granular layer:
small pyramidal neurons and
numerous stellate neurons.
III. External pyramidal layer:
predominantly small and
medium sized pyramidal neu-
rons and non-pyramidal neu-
rons.  
I-III are main target and Layer
III the principal source of of
intercortical connections.

From: Principles of Neural Science
Kandel, Schwartz, Jessel, 1991

C
o
rtex

Cortex
Thalamus

Motor

Thalamus

IV. Internal granular layer: stellate and pyra-
midal neurons. Main target from thamalus. 
V. Internal pyramidal layer: large pyramidal
neurons and interneurons. Source of motor-
related signals.

VI. Multiform layer contains few large pyra-
midal neurons and many small spindle-like
pyramidal and multiform neurons. Source of
thalamus connections.
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A typical synapse delivers about 10 -
30 pA into the neuron. In many cases,
this means that it increases the mem-
brane voltage at the cell body by about
0.2-1 mV.

Therefore, many synaptic inputs have to
happen synchronously to trigger an
action potential.

Neuronal Signals

From: Principles of Neural Science
Kandel, Schwartz, Jessel, 1991
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Dendritic Spines: Inputs for Synapses
Excitatory synapses form often
at spines which are bulges of
dendritic membrane. 

Although much is unknown,
they probably act as local diffu-
sion reservoir for Calcium sig-
nals and change their shape
upon learning. 
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The interplay of currents along
the dendritic tree can be intricate
and allows the neuronal network to
implement various logical opera-
tions (left):

A: Inhibitory synapses can veto
more distal excitatory synapses:
output = [e3 and not (i3 or i2 or
i1)] or [e2 and not (i2 or i1)] or
[e1 and not i1].

B: Branches can overcome the
inhibitory effects. For example [e5
and not i5] and not i7.

So the assumption that a dendritic
tree is a simple addition is very
simplistic.

Dendritic Logics

From: The Synaptic Organization of the Brain,
Gordon M. Shepherd 1998

Excitatory

Inhibitory
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Experimentally, one can excite large trains of
action potential (top). 

Thus, for long, the average firing rates
were taken as main parameter of neural net-
works. 

Sparse Firing

From: Principles of Neural Science
Kandel, Schwartz, Jessel, 1991

Fast spiking is not the normal mode of
operation for most neurons in the brain.
Typically, neurons fire sparsely where
each action potential counts (below).
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McCulloch and Pitts simplified neuronal sig-
nalling to two states:
- Neurons i=1..N are either in state Si=-1 or 

Si=+1, i.e they are silent or fire an action 
potential

In the simplest model of an associative
memory, the neurons are connected to
themselves with a coupling strength
matrix Jij. It contains the “strength” or
synaptic weight of the connections between
the neurons. 

Assume that the dendrites of neuron i only
add the signals. The internal signal of the
neuron hi is then the matrix product of
incoming neuronal states Sj according to
hi=JijSj (sum over common indexes). 

In the simplest form, neuron i fires if hi is
positive: Si=sign[hi]. 

This update can be performed with time
lags, sequentially or in parallel and defines
a dynamic of the neuronal net.

Simple Model: Associative Memory
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The dynamics has a number of
defined fix points. By setting Jij,
activity patterns can be memorized
and dynamically retrieved. 

You want to memorize the patterns
 into the network. The recipe to

do this is reminiscient of an old pos-
tulate in neuroscience.

Hebb postulated in 1949: “When an
axon of cell A is near enough to
excite a cell B and repeatedly or per-
sistently takes part in firing it, some
growth process or metabolic change
takes place in one or both cells such
that A’s efficiency, as one of the cells
firing B, is increased.”. 

Both proportionalities are still
present in the learning rule for Jij on
the left. 

ξμ

Jij
2

N 1 a2–( )
----------------------- ξi

μ ξj
μ a–( )

μ 0=

q

∑=

Pattern µ for neuron i:

ξi
μ 1±=

Probability for “+1”:

1 a±
2

-----------

Learning the Patterns with a Hebbian
learning rule leads to: 

Simple Model: Associative Memory



Vorlesung Biophysik Braun - Neurronale Netze

Images of the size IxI are often used to show the
memorizing capability of neural networks. Thus,
the image is the pattern vector with length I^2
and the coupling strength matrix J has a size of
I^2 x I^2.

For example we store 8 letters with I=10 using
N=100 neurons and a coupling matrix of 100x100
weights. The retrieval from highly noisy input is
possible, but shows some artefacts (F,G).

Retrieval is performed by starting at the noisy pat-
tern, following the neuronal update dynamics to its
fixpoint.

The capacity of a fully connected formal neural
network scales with N. The number of patterns
which can be stored is about 0.14xN. Thus in
above network we can store about 9 letters.

An associative memory with the same number of
synapses (1015) than the brain could save
0.14*107.5=5x106 different patterns.

But the connections in the brain are much more
complex.
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Matrix J

Input
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Output
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From: Models of Neural Networks I, 
Domany, van Hemmen, Schulten, Springer 1995

Capacity q of a fully

μ 1…q= q 0.14N≈

Simple Model: Associative Memory

connected network:



Vorlesung Biophysik Braun - Neurronale Netze

J.J. Hopfield showed 1982 that formal
neural networks are analogous to spin
glasses.

A spin glass is an amorphous material
which fixes spins in a 3D matrix. The
spins can be oriented up or down. 

The magnetic field from each spin
influences the other spins. This
“crosstalk” between spins is described
by a coupling strength matrix J. 

Such a spin glass is described by the
Hamilton operator H to the left. The
fixpoints are now simply the ground
states of the system to which the
dynamics converge.

The analogy made neuronal networks
more accessible to theoretical physicists.

Hopfield-Analogy to Spin Glasses
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Hamilton-Operator for Spin Glasses

Coupling
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Synapses of real neural networks
show intrinsic noise. For example,
chemical synapses either release a
synaptic vesicle, or they don’t (“quan-
tal” noise). 

It is implemented into neuronal net-
works with a probabilistic function
of t(h) with t being the probability to
find the output neuron in the state
Si=+1.

As expected, noise does not change
the property of neural networks dra-
matically. 

As everywhere in biophysics, the inclu-
sion of noise in a model is a good test
for its robustness.

Towards realistic neurons

With Randomness:

Prob t h( )[ ] 1 βh Θ–[ ]tanh–
2

------------------------------------------=

Deterministic:

t h( ) sign h[ ]=

From: Gerstner, Ritz, van Hemmen,
Biol. Cybern. 68,363-374 (1993)

SOUT t JSIN( )=
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Until now, we have assumed instan-
taneous propagation of signals in
neural networks. This is not the case
and typical delays are on the 5-20ms
time scale.

Delays leads to new dynamics of the
network and can trigger oscillations
(left). 

We will discuss a compelling model
which uses these delays in the follow-
ing.

Towards realistic neurons

From: Models of Neural Networks I, 
Domany, van Hemmen, Schulten, Springer 1995

Sparse Firing and Oscillations
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Phase Locking and Pattern Recognition
One old theory of pattern gecognition is the
so called “grandmother cell” proposal. It
assumes that partial patterns converge to
one cell and if that cell fires, the grand-
mother is seen. However this approach has
severe problems:
- What happens if this cell dies?
- Not much experimental evidence
- “Combinatorical Explosion”: any combi-
nation of patterns would require a novel
grandmother cell, much more than even the
brain can have.

The detection of patterns by cell groups as
associated memory does not have that prob-
lem. Noisy signals can still be detected and
the model is robust against death of single
cells.

However there are two major problems:
- How should the pattern be read out?
- “Superposition catastropy”: a superpo-
sition of patterns is not recognized since it
acts as novel pattern.

Superposition
Catastrophy

B. Recognition by Cell Groups

A. Recognition by “grandmother cell”



Vorlesung Biophysik Braun - Neurronale Netze

Phase Locking and Pattern Recognition

A biologically motivated and analytically soluble model of collective oscillations in the cortex.
Gerstner W, Ritz R, van Hemmen JL, Biol Cybern. 1993;68(4):363-74.
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Inhibition

Delayed
Fires a few pulses 
followed by a pause
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Explanation

Behaviour depends of relative 
timing of inhibition and 
excitation
Low delay:

– Quick feedback, immediate 
growth

Medium delay:
– Excitation while  neuron is 

inhibited
Long delay:

– Excitation from previous 
oscillation stimulates the 
following excitation
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Gerstner W, Ritz R, van Hemmen JL, Biol Cybern. 1993;68(4):363-74.
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How does the Hebbian learning para-
digm keep up with experiments?

Single neurons before and after a syn-
aptic transmission are excited exter-
nally with different time delays. The
efficiency of the synapse is recorded
before and after the learning protocol. 

This allows to infer the time resolution
and direction of learning increment ΔJij
for a synapse (left). 

These results would for sure have
pleased Hebb. Indeed, the precise tim-
ing of neuron modulates the learning
of a synapse with a very high time res-
olution on the ms time scale.

Towards realistic neurons: Temporal Learning

Hebbian in time 

JijΔ 1
NT
-------- eij t( )Si t( )Sj t τ–( ) td

0

T
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From: L. F. Abbott and Sacha B. Nelson, 

eij t( )
Shapes of

Nature Neuroscience Suppl., 3:1178 (2000)
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Temporal Patterns

If we start from a distribution of
axonal lengths, different synapses
transport the information of both time
delay and strength.

This can actually be used to extend
the associative memory of networks
onto the temporal domain: a sequence
of patterns can be stored. If triggered,
movie of patterns is generated (left).

from:
Retrieval of spatio-temporal sequence
in asynchronous neural network,
Hidetoshi Nishimori and Tota Naka-
mura, Physica Review A, 41, 3346-
3354 (1990)
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Finding: sensory maps are found in
the brain with a high large scale orga-
nization.

Problem: how does the brain map and
wire similar outputs next to each
other although there is no master to
order the things?

Sensory Maps: Kohonen Network

Approach: Kohonen assumed a
“winner takes all” approach where
direct neighbors profit from a map-
ping and more distant ones are pun-
ished. With this, a simple algorithm
(next page) generates beautiful sen-
sory maps.

Disadvantage: We can only guess the
real microscopic algorithm behind
the approach since it appears that we
need a master to determine the win-
ner.



Vorlesung Biophysik Braun - Neurronale Netze

Step 0: Initialization.
Synaptic weights Jvl=random.

Step 1: Stimulus
Choice of Stimulus Vector v.

Step 2: Find Winner
Find Stimulation-Winner location a
with minimal weight vector - distance
from stimulus v.

Kohonen Network Algorithm

Input stimulus vector v with index l

Synaptic weight Ja l,  from V to A
Target map location a

Step 3: Adaptation
Move the weights of winner (and its
surrounding h) towards the stimulus v

v Ja'– v Ja–≤

Ja
new( ) Ja

old( ) εha a', v Ja
old( )–[ ]+=

and go to Step 1. This will converge
towards a mapping given by:

Input of a given by Ja l, vl
l
∑ withv a→ v Ja–  minimal.
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Kohonen Example: 2D to 2D mapping

Example. 

Input vector v is the logarithmic
amplitude of two microphones
which record a sound in a 2D
space. 

We start with random weights J.

The Kohonen algorithm results in
a map that reflects the setting of
the sound location in 2D space. 

The Kohonen-map has memo-
rized neighborhood informa-
tion into their synaptic
weights.
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Kohonen Example: 2D to 1D mapping
Quite impressive is the Kohonen
mapping between different
dimensions - in this case between
the locations in 2D to a 1D recep-
tive Kohonen map. 

The mapping problem in this case
is similar to the traveling sales-
man-problem.




