
TCI.1

1. Motivation

Many branches of science deal with complicated functions of many
variables (e.g. classical or quantum field theories…).

These functions often have structure of many different length scales.

(i) Long scales: demand large domain of definition.

(ii) Short length scales demand dense grid.

(i) and (ii) together imply: numerics requires exploding costs in 
    memory and computation time  = 'curse of dimensionality'

Can explosion of costs be avoided without loss of control of accuracy?

Yes, if functions are 'compressible'!

4-point vertex functions of single-
impurity Anderson model

[Fernandez2025]

Famous example: quantum many-body wavefunctions. 

They can always be expressed as tensors:

Any tensor can be 'decomposed' or 'unfolded' into a 'matrix product state' (MPS) or 'tensor train' (TT):

'degree of tensor'  =  number of legs = 

'local index'  =                            'local dimension' = 

Total number of elements of         : 

     exponentially large in               'curse of dimensionality'

'bond dimension' = implicit Einstein summation over repeated indices:

'bond index' =  

Standard tool for unfolding tensors via repeated singular value decomposition (SVD):

Matrix SVD:

Tensor Cross Interpolation (TCI) I
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      is strongly compressible if it can be approximated by TT       with low bond dimension:

Miraculous fact: ground-state wave-functions of 1-dimensional Hamiltonians with short-ranged interactions
are compressible! This led to development of DMRG and a powerful 'standard toolbox' for manipulating TTs
(and more general tensor networks, e.g. tree tensor networks, ...) 

Tensor SVD:

'optimal': minimizes                                 in Frobenius norm.

'expensive': needs all           elements of             (else decomposition could not be optimal)!

Tensor SVD is

'rank-revealing': reveals correct rank (bond dimension) of every bond.

                               Then the number of elements,                                   , does not increase exponentially with     . 

                               

elements
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Recent (since ~2010) insight:  compressible tensors arise not only in quantum many-body theory.

Any discretized function can be expressed as a tensor. Often, that tensor is compressible!

If so, standard function manipulations (addition, multiplication, integration, convolution, Fourier transform)
can be performed using tensor network toolbox, with exponential savings in numerical cost (memory & time)!

Bottleneck: standard strategy for unfolding tensor to a TT uses SVD, which requires knowledge of all 
components of tensor. So, SVD-based unfolding is exponentially costly.

Recent progress: novel unfolding strategy based on tensor cross interpolation (TCI). 

If tensor is compressible, TCI finds TT representations at runtime costs
(If tensor is not compressible, TCI signals this by converging very slowly or not at all.)

TCI 'learns' compressed representation by interrogating only tiny subset of all elements of tensor.
This is akin to active machine learning, using a structured model (namely the TT) to represent the data.

TCI compression of 4-point vertex of Single-impurity Anderson model: allows zooming in without loss of resolution:

Historical remarks:

TCI pioneering papers (published in applied maths journals):
[Oseledets2010, Oseledets2011, Savostyanov2011, Savostyanov2014, Dolgov2020]

Early applications in physics (and beyond): 

[Sozykin2022] Find minima of functions

[Fernandez2023] efficient (sign-problem-free) alternative to Monte Carlo sampling for calculating 
high-dimensional integrals arising in Feynman diagrams for quantum many-body systems

[Ritter2023] Compute topological invariants 

Open-source toolbox:

https://tensor4all.org/
analyze your 

favorite function

obtain
compressibility

diagnosisusing our tools

[Sakurai2024] In mathematical finance, to speed up Fourier-transform-based option pricing

[Jolly2023]  Compute overlaps between atomic orbitals, solve Schrödinger equation of             ion
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TCI.1

Consider integral over function of       variables:

Standard approach:  Monte-Carlo sampling of integrand. 
Well-known issue: sign problem -- very slow convergence if integrand has many sign changes.

TT approach: discretize function, represent it as tensor, unfold it to TT: 
This yields        independent integrals that can be computed separately.

Discretization:

Represent each variable on grid of        distinct points:   

enumerated by an index 

(assume same grid for all variables)

'Natural tensor representation' of function:

(for simplicity, same integration domain for each variable)

Unfold this tensor into a TT   [using SVD (expensive) or TCI (much cheaper)]:

shorthand for 

When         is low rank  (           = small),         is almost separable' (it would be separable if           ) 

Integral separates into        one-dimensional integrals, which in practice are performed as discrete sums,  
followed by sequence of matrix-vector multiplications:

Example: 10-dimensional integral of rapidly oscillating function:

Convergence with number of function evaluations: TCI:                (fast!)      

[Fernandez2025, Sec. 2.2]

Monte Carlo:              (slow!)   

TCI unfolding gives huge speed-up for multi-dimensional integration (without sign problem)!

will be explained in detail later!

2. Integration of multi-variate functions
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TCI.3

Consider               matrix    

with column vectors 

'range of A' =  

'rank of A'   =  dimension of range of A =  number of linearly independent columns 
=  number of linearly independent columns

If A has rank = , then every column can be represented 

as linear combination of  subset of     columns, 

Let         be submatrix of          containing those columns:  

Matrix elements of  A: 

So, A can be factorized:

This is compressed representation:

Memory cost:           elements for  A,                       for  B and C.   

SVD  reveals rank: 

but computing it requires entire matrix A

Alternative low-rank approximation techniques exist that require only subset of rows and columns of matrix: 

(i) matrix cross interpolation (CI),  and  (ii) partial rank-revealing LU decompostion (prrLU)
this section next section

Matrix cross interpolation (CI)

Let         be              matrix of rank         with elements                .

             list of all row indices, list of column indices

sublist of row indices, sublist of column indices

= 'slice' of        containing all intersections of     -rows and     -columns:

In particular: 

[Fernandez2025, Sec. 3.1]3. Matrix cross interpolation (MCI)
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Assume              , with              chosen such that                 is non-singular:  

Define: 

'pivot matrix', its elements are called 'pivots' gathers all columns 
containing pivots, i.e.
all 'pivot columns'

gathers all rows
containing pivots, i.e.
all 'pivot rows'

CI formula:

external indices          are fixed,

internal bonds represent sums
over pivot lists:

gives rank-       approximation       of      

Properties of CI formula:

(i) For           ,     yields an 'interpolation', i.e. it exactly reproduces all     -rows and all    -columns of     ,   

i.e. 'all rows and columns from which      was built'.

Proof of (i):  consider only pivot rows (    -rows) or pivot columns (   - columns):

'Plausibility argument':  for , all columns of      can be expressed as linear combinations of a 
subset of     columns. Choose these to be pivot columns. Since CI formula reproduces all pivot columns 
exactly, it is plausible that it reproduces all columns of A exactly. 

exists

In general,       has no information about the 'other' (non-pivot) rows and columns of     . If these are 
unrelated to the pivot rows and columns (e.g. because       is a random matrix), CI formula will get them 
completely wrong. However, if the non-pivot rows and columns are somewhat / very / fully related to the 
pivot rows and columns, i.e. if  some / most / all of them can be expressed as linear combination of pivot 
rows and columns, the CI formula will reproduce them somewhat well / very well / exactly.  

'pivot rows' 'pivot columns' 

Remark:    and     contain original columns and rows of     itself, not linear combinations of those.
By contrast, for SVD,    and      contain linear combinations of rows and columns of    . 

(ii) For            ,     exactly reproduces the entire matrix,                   

Caveat: does the CI for the non-pivot columns yield the correct linear combinations of pivot columns?
Answer is yes. Proof of (ii) follows further below.  
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(iii) Error of CI formula is determined by              , the Schur complement of       in        

Definition: for block matrix: with       assumed square and invertible,

the  'Schur complement of         in        is:

note index structure: 1 meets 1

Permute rows and columns of     such that all pivots lie in first        rows and columns, labeled 

. Denote labels of remaining rows and columns by 

Permuted matrix: 

CI formula: 

CI error:

Error depends on inverse of pivot matrix. So, strategy for reducing error is to choose pivots such that
                is maximal. This is known as 'maximum volume principle' (more rigorous argument: see below).

Finding 'best pivots', i.e. ones that satisfy maximum volume principle, is in general exponentially difficult; 
but good heuristics exist that get close to optimum in practice (see below).

Schur determinant identity: 
proof: see (TCI.5.3-5)

block dimensions match:

Proof of (iii): consider arbitrary matrix       and pivot matrix      . 

Proof of (ii):

For          , pivot matrix                             has dimension 

(rigorous version of plausibility argument given above)

Pick arbitrary 'new' element                  of        that does not sit on a pivot row or pivot column.

Consider                
submatrix of      , built from
pivot matrix and new element:

Recall Schur determinant identity:

Applied to       :
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Applied to       :

pivot matrix is non-singular
   has           columns, hence 
they are linearly dependent

Therefore:

Thus, CI formula exactly reproduces any 'new' element that does not sit on pivot row or pivot column.
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