Tensor Cross Interpolation (TCI) I [Fernandez2025]

TCI.1

1. Motivation

4-point vertex functions of single-
impurity Anderson model

Many branches of science deal with complicated functions of many G O —
variables (e.g. classical or quantum field theories...). :
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These functions often have structure of many different length scales.

(i) Long scales: demand large domain of definition. =]

(ii) Short length scales demand dense grid.

(i) and (ii) together imply: numerics requires exploding costs in
memory and computation time = 'curse of dimensionality'
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Can explosion of costs be avoided without loss of control of accuracy?

. . . <04 0 04 -0.4 0 04
Yes, if functions are 'compressible'! T )

T(r=(cl'1,...,cr£)

Famous example: quantum many-body wavefunctions. W) =30 Fo,..0.]01)®]02)®- - -®l0o,)
They can always be expressed as tensors: ' r ‘1'
o = W
'degree of tensor' = number of legs = [ 01 02 oc
'local index' = 64 =1, o ol 'local dimension' = ¢A
r g T8
Total number of elements of F&. | = F. e €

exponentially large in f = 'curse of dimensionality'

Any tensor can be 'decomposed' or 'unfolded' into a 'matrix product state' (MPS) or 'tensor train' (TT):

L
Fo mFp =] [M) = [MI5L IM1T2, - [MLIOE ), 4
(=1
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ayagy - gy ccoaf o1 a9 ag ar
MI 71 Mos 7] Q,,.
P o v U1 Myl ()
T L S M %1% 1% ‘bond index' =, =1 .., ,
N~ // Ae
implicit Einstein summation over repeated indices: Z 'bond dimension' = X(

0&1=|

Standard tool for unfolding tensors via repeated singular value decomposition (SVD):
u s Vi

Matrix SVvD: M = MSV+ ~ ( )( )
o & B

X <— rank of approximation
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Tensor SVD:

~
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X1 X2 X3
= ¢ ¢ ¢ X = Xmax is measure of
01 02 03 04 --- Of maximal “bond entanglement”

2
O(dx .ﬁ) elements
Tensor SVD is

'optimal': minimizes “ F? - F« || in Frobenius norm.
'rank-revealing': reveals correct rank (bond dimension) of every bond.

'‘expensive': needs all o elements of Fg (else decomposition could not be optimal)!

Lo

Fs__. is strongly compressible if it can be approximated by TT F;. with low bond dimension: ’Xh << dﬂe/‘(
by

2 &£
Then the number of elements, (9( Adx £ ) << d , does not increase exponentially with .

Miraculous fact: ground-state wave-functions of 1-dimensional Hamiltonians with short-ranged interactions
are compressible! This led to development of DMRG and a powerful 'standard toolbox' for manipulating TTs
(and more general tensor networks, e.g. tree tensor networks, ...)

(a) Tensors: 0 @ < Q '-|—|_—|—rI
vectors 10, matrix f 3-leg tensor 4-leg tensor

hoap &
(b) Tensor networks: " Y0) 00 -9 o 0000

. . . o 2 -
inner product @'y matrix times vector Tr(h?)  ftensor train tree tensor network

(c) Tensors viewed as large vectors or large v m— H q#::i

matrices in higher-dimensional spaces:

large vectors large matrix
T i

@0 _ C HW i HW N ]
ommon {!pﬂﬁltl(}llﬁ = 1 [ ] = m [ ] = [ ]
involving large vectors = “ E],:::::,I:' EV]:II:II:]F e

and large matrices: inner product matrix times vector eigenvalue equation

() TT unfolding: I e <~ Q@90 U He=m==p ~ QOO0 H
tensor train (TT) TT operator (TTO)

HW o HW W

o 23353 gaR3- e agfe o
1A
inner product matrix times vector eigenvalue equation
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Recent (since ~2010) insight: compressible tensors arise not only in quantum many-body theory.
Any discretized function can be expressed as a tensor. Often, that tensor is compressible!
If so, standard function manipulations (addition, multiplication, integration, convolution, Fourier transform)

can be performed using tensor network toolbox, with exponential savings in numerical cost (memory & time)!

Bottleneck: standard strategy for unfolding tensor to a TT uses SVD, which requires knowledge of all o{f
components of tensor. So, SVD-based unfolding is exponentially costly.

Recent progress: novel unfolding strategy based on tensor cross interpolation (TCI).

If tensor is compressible, TCI finds TT representations at runtime costs [9( dX 3.{)
(If tensor is not compressible, TCI signals this by converging very slowly or not at all.)

TCI 'learns' compressed representation by interrogating only tiny subset of all elements of tensor.
This is akin to active machine learning, using a structured model (namely the TT) to represent the data.

TCI compression of 4-point vertex of Single-impurity Anderson model: allows zooming in without loss of resolution:
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Historical remarks:

TCI pioneering papers (published in applied maths journals):
[Oseledets2010, Oseledets2011, Savostyanov2011, Savostyanov2014, Dolgov2020]

Early applications in physics (and beyond):
[Sozykin2022] Find minima of functions

[Fernandez2023] efficient (sign-problem-free) alternative to Monte Carlo sampling for calculating
high-dimensional integrals arising in Feynman diagrams for quantum many-body systems

[Ritter2023] Compute topological invariants
+
[Jolly2023] Compute overlaps between atomic orbitals, solve Schrddinger equation of Hz ion

[Sakurai2024] In mathematical finance, to speed up Fourier-transform-based option pricing

— _ 10° ——
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«2107% § 15
Open-source toolbox: bl e — - T 1009 el
P, e J | T AN S—
https://tensor4all.or “ ‘ 6o
ps:// a/ E obtain
analyze your _ compressibility
favorite function using our tools diagnosis
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2. Integration of multi-variate functions [Fernandez2025, Sec. 2.2]

TCI.1

Consider integral over function of £ variables: I-= fo(’{x f(x) (1)

2 s
f cK—K, X200,y e K)o D ()
(for simplicity, same integration domain for each variable)

Standard approach: Monte-Carlo sampling of integrand.
Well-known issue: sign problem -- very slow convergence if integrand has many sign changes.

TT approach: discretize function, represent it as tensor, unfold it to TT: £ /x\ = F;: @ bo= ;ITMQ
This yields F4 independent integrals that can be computed separately. (%)
Discretization: (assume same grid for all variables) d 4
a3 ///._2
Represent each variable on grid of d distinct points: ¥ — §ﬂ , "‘Ps ;o ’i(i 1 Y
enumerated by anindex 0, = 1. . d ®
WY X (s)
'Natural tensor representation’ of function: F = ‘ﬁ(P . s P = |
‘l, )P‘& ) ? Crll crlg I . I G!ﬁ
Unfold this tensor into a TT [using SVD (expensive) or TCI (much cheaper)]:
will be explained in detail later!
~ My Me l"l'irg
-(‘(X"~-,X£\ F 4 F&‘ = "_(?_(?_(?_(Pml - J?JC x - Ml(x‘),.. Mll)('e\ .. Mz(xx\ (‘)
4
shorthand for ¥p(s,) = Mf' ... Mg‘ M;‘e K]

When F islow rank ( ym e small), 7C is almost separable' (it would be separable if X =)

Integral separates into o{ one-dimensional integrals, which in practice are performed as discrete sums,
followed by sequence of matrix-vector multiplications:

—_
(=}
)

T = [ad) = [drM ) - foyMby) - Jhx vl 6

= ’S‘\l o 1/ N
l ~
6, 6 : 1072 7 \\ \/M‘i,ﬂ
K —
- (Z Mu'\ : (Z f"]j) . [Z f"lt‘) W = BN
o 1 y
6, 6 74 £ 10 d | .
3 — GK15 I§ X eval
:::L 106 4 GK21 2 \
Example: 10-dimensional integral of rapidly oscillating function: £ — GK41 ¢ \
- — GKG61 ‘l
4 | | | |
1=10° J d19% COS(lOZglgl xez) exp[—10—3( 221"6] ] oy - - - | |

number of evaluations Neva

[—1,+1]10

b _.
Convergence with number of function evaluations: TCI: ~ Noy.e (fast!) Monte Carlo: ~ N“z‘ (slow!)

TCI unfolding gives huge speed-up for multi-dimensional integration (without sign problem)!
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3. Matrix cross interpolation (MCI) [Fernandez2025, Sec. 3.1] TCL.3

Consider k» x v matrix A = (ﬁu,az, e 3,‘) = [ ] (e
wm
with column vectors 'a)j ecC*™ -
'range of A' = Span iZ. , 21, o 3,‘.{ ()
'rank of A' = dimension of range of A = number of linearly independent columns

number of linearly independent columns »

IfAhasrank = A , then every column can be represented

X
as linear combination of subset of A columns, ai = Z Ei C(j (s)
l=1
Let § be submatrix of Ef containing those columns: § = ( {>, B -[;7( ) (s)
A= 6, 2 ZE) ¢ - % sac
Matrix elements of A: -o= a-l = . o= B G
kj .‘ k = 1 k IJ = kl {J (L)
So, A can be factorized: = . = .
A B - C . %( ) o)
My wn X X /X X w 1
This is compressed representation: *
Memory cost: -1 elements for A, <w\+ V\)'X for Band C.
4
SVD reveals rank: A = KSV . [ ] a [ ]( )( ) (&
but computing it requires entire matrix A H?«(—/

Alternative low-rank approximation techniques exist that require only subset of rows and columns of matrix:

(i) matrix cross interpolation (CI), and (ii) partial rank-revealing LU decompostion (prrLU)
this section next section

Matrix cross interpolation (CI)

— fee000cceccsoe
Let # be wxin matrixofrank X  with elements If](j .- [--f--m}--f--] (4)
—y 0000000000000
1 L |
| e ][ = ;11 . Z list of all row indices, J € ] "?', -,V\Z list of column indices (1)
I = 5 1,“._’] ,5(,{ C ][ sublist of row indices, J = 5\[':)]%} < JI sublist of column indices (11
T R
. .. . . — ~—>(ocee
A [I]] = 'slice’ of K] containing all intersections of 7, -rows and /-columns: 3(%2;) (12}
1

A{Ilt]]ypz F]"“ :jﬁ ¥ d'/S efn .., 52? In particular: A [II]'] =f (13)
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Assume 'S\( < X, with _T,, 7 chosen such that FI[I]] is non-singular: de’*(ﬁl [I]]\ 0 [

: . - Soee - oee —d/ee0cecccecccce
Define: P = A[ 7] = :;(:2;), C=AlI.J)=(3) R=A[LT) =3
~ 2o
'pivot matrix', its elements are called 'pivots'  gathers all columns et :‘athers all rows (K)
w - containing pivots, i.e. containing pivots, i.e.
°4<+ P £ o = P exists all 'pivot columns' all 'pivot rows'
CI formula: A 2 C - P’I - R = 2]' (16)
-~ b - /
gives rank- X approximation Kl of A A [-ﬂ :ﬂ-] < A{I,J] P A[l:]-] 13
o i j i i i
external indices .| are fixed, A; j = I ~ TO——1T 1 (1%)
J 1
2 m 2
internal bonds represent sums
— LI XXX xxxl -
over pivot lists: 2. 2. eicccecce (19)

L] L] L]
0000000000000 | 3
°

0000000000000 -

el jeg

Remark: C and R contain original columns and rows of A itself, not linear combinations of those.
By contrast, for SVD, |( and V+contain linear combinations of rows and columns of .

Properties of CI formula:

(i) For X<X , ﬁ yields an 'interpolation’, i.e. it exactly reproduces all 7 -rows and all / -columns of 4,

=
. . ~ . 'nivot rows' 'pivot columns'
i.e. 'all rows and columns from which £ was built'. P 21)

Proof of (i): consider only pivot rows ( 7 -rows) or pivot columns (/- columns):

Az E Alzg) P AlET) < AILT) S () ¢ (55‘555555555552)
LT "
RIS ALy ALz < Al ) FHIE I GHR I
13,5 232 3

In general, E) has no information about the 'other' (non-pivot) rows and columns of A . If these are
unrelated to the pivot rows and columns (e.g. because A is a random matrix), CI formula will get them
completely wrong. However, if the non-pivot rows and columns are somewhat / very / fully related to the
pivot rows and columns, i.e. if some / most / all of them can be expressed as linear combination of pivot
rows and columns, the CI formula will reproduce them somewhat well / very well / exactly.

»~

(i) For ’K =X, ﬁ exactly reproduces the entire matrix, 4 = A (z0)

'Plausibility argument': for % =% all columns of A can be expressed as linear combinations of a
subset of X columns. Choose these to be pivot columns. Since CI formula reproduces all pivot columns
exactly, it is plausible that it reproduces all columns of A exactly.

Caveat: does the CI for the non-pivot columns yield the correct linear combinations of pivot columns?
Answer is yes. Proof of (ii) follows further below.
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(iii) Error of CI formula is determined by [F/P ], the Schur complementof P in A D)

Definition: for block matrix: A= (A“ Alz) = {:| with A, assumed square and invertible,

- \A21 Ay
11
the 'Schur complement of Fly in A is:  [A/A11]1=As —As1 (A1) AL, (22)

note index structure: 1 meets 1

block dimensions match: [ -1 |:|

Schur determinant identity:

detA = detAn det[A/AH]
proof: see (TCI.5.3-5)

(zv)

Proof of (iii): consider arbitrary matrix 4 and pivot matrix P.

Permute rows and columns of Al such that all pivots lie in first X rows and columns, labeled

I, = ] = fl,, . /’ﬁ . Denote labels of remaining rows and columns by Z; = I\I, , .7,_ =J\ 7,

Permuted matrix:

(AT, ATLT)N /lz/”ijﬁ Ap) _ _
AL D)= (A(Iz, J1) A(IZ:jZ)) B Mz/]} Azz) : P=4n=AT,7) e
-1 C‘"
AC P R A A
CI formula: A= (Ai) A AL Ap)= (A; A21(A111§_1A12) (29)

~ 0 0
CI error: A—A= (O [A/All])—;\\ (26)
=[A/P]

Error depends on inverse of pivot matrix. So, strategy for reducing error is to choose pivots such that
|olul'. P| is maximal. This is known as 'maximum volume principle' (more rigorous argument: see below).

Finding 'best pivots', i.e. ones that satisfy maximum volume principle, is in general exponentially difficult;
but good heuristics exist that get close to optimum in practice (see below).

Proof of (ii): (rigorous version of plausibility argument given above)

For % =X, pivot matrix P = A[ I?] has dimension X x X
Pick arbitrary 'new' element ( Xo, 'j") of A that does not sit on a pivot row or pivot column.

Consider(?(n\x('x-u) : ,
submatrix of A, built from _ﬁ{%lﬁﬂ:(A@JU ML%W::RMH 23)

pivot matrix and new element: 21 A A(zo,J)  A(zo,%0) :@,\
new
Recall Schur determinant identity: detA'= detAl; det[A/A1;] (28
N m—

' Ajy— A5 (A1) AL,
Appliedto A :
o= detA' = det{A(I, j)] det[A(l‘o, yo) — A(J)o, j)Ail(I, j)A(I, y())]

|
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I
Appliedto Fl :

o= detd = det[A(Z, T )| det[A(x0, y0) — Ao, j)Ail(Ia J)A(Z, yO)]
———

' | | I—
A has X+1 columns, hence #+o0 29\
they are linearly dependent pivot matrix is non-singular
(¥
Therefore: A(zo, y0) = Ao, )AL, AT, y0) = A (o, y,) (30)

Thus, CI formula exactly reproduces any 'new' element that does not sit on pivot row or pivot column.
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