
CBE.1

[Hubig2018]

When doing MPS computations involving SVD truncations of virtual bonds, 
the results should be computed for several values of the bond dimension,       , 
to check convergence as               . Often it is also necessary to extrapolate the 
results to               ,  e.g. by plotting results versus             or some power thereof. 

However, for some computational schemes, it is not a priori  clear how the observable of interest scales 
with      , nor how it should be extrapolated to              . An example is ground state energy when computed 
using 1-site DMRG with subspace expansion [Hubig2015], because it does not rely on SVD truncation of bonds. 

Thus, it is of interest to have a reliable error measure without requiring costly 2-site DMRG. A convenient
scheme was proposed in [Hubig2018], based on a smart way to approximate the full energy variance, 

(= zero for an exact eigenstate)

with 

Computing                       directly is costly for large systems with long-ranged interactions,
such as 2D systems treated by DMRG snakes. Also, computing          as the difference 
between two potentially large numbers is prone to inaccuracies. [Hubig2018] found
a computation scheme in which the subtraction of such large numbers is avoided a priori.

Then extrapolations can be done by computing quantity of interested for several     ,
but plotting the results via            , and extrapolating to           

If quantity of interest is energy, then extrapolation is linear, 

Key idea: use projectors           onto mutually orthogonal, irreducible spaces    

orthogonality

Insert completeness into 
definition of variance: 

Now two crucial simplifications occur:

Recall (2.11): 

completeness

with 

(2.16) (2.17)

Energy variance1.

Energy variance, controlled bond expansion (CBE)
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Now two crucial simplifications occur:

largest contribution to variance cancels by construction!

since 

In practice, approximate              by the first two nonzero terms:           

(11) is exact if longest-range terms in        are nearest-neighbor, because then 

Explicit computations:

Recall

mutually 
orthogonal!
(TS-I.4.15)

We would like to avoid computing explicitly, because of its large image dimension. So, exploit

completeness of kept together with discarded isometries: 

(TS-II.2.16)

(TS-II.2.11)

[Gleis2022a]
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(2.17)
Recall

again use 

also follows from (16) using

and
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CBE.2

Problem: when exploiting symmetries, 1-site DMRG performs poorly, because it does not explore 
subspaces with different quantum numbers. An early remedy for this is 2-site DMRG, but that is 
computationally much more expensive than 1-site DMRG. Subsequent suggestions for 1-site DMRG with 
symmetries are 'density matrix perturbation' [White2005], the 'center matrix wave function formalism 
[McCulloch2007],  'subspace expansion' [Hubig2015], and 'controlled bond expansion' (CBE) [Gleis2022], 
which performs best.

Minimize energy with constraint of 
fixed normalization, 1 site at a time:

Reminder of 1-site DMRG,
in site-canonical representation:
Local basis:

close 
zipper

Reminder of 2-site DMRG, 
in 2-site-canonical representation:

Minimize energy two sites at a time:

Solve for 'eigenvector' with lowest eigenvalue, say            , then do SVD on it to move to next site:

Solve for 'eigenvector' with lowest eigenvalue,             , then do SVD and truncate (!) to move to next site:

Important: dimensions of           are fixed, hence truncation is neither needed nor possible!

[Gleis2022]

SVD

SVD
truncate

Local basis:

reshape

QR

cost ~

cost ~

2. Controlled bond expansion (CBE) for DMRG
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Problem of single-site optimization: it is constrained to a variational space defined by outgoing state spaces

                     .  If the ranges of quantum numbers        and        for these spaces are too small to accurately
represent the ground state, single-site DMRG has no way to enlarge them. 

Two-site optimization does not have this problem: the action of H on two sites enlarges bond dimension in
between, adding the full range of quantum numbers needed on that bond. If a certain quantum number was 
missing on that bond before the action of H, but appears afterwards with non-negligible weight, it will survive
after SVD and truncation. Hence: two-site optimization can add missing quantum numbers, if needed.

But this comes at a cost: effective two-site Hamiltonian has dimension
By contrast, effective one-site Hamiltonian has dimension 

1s DMRG:

updated      has same      
bond dimensions as initial 

2s DMRG:

contains all quantum numbers consistent with 

updated            can have larger
bond dimensions than initial    

1-site optimization of truncated         will never find a good ground state if latter has non-negligible contributions 
from missing blocks. 

2-site optimization can reinstate missing blocks!

If bond                is truncated (e.g. dropping           ), that causes missing states on all later bonds!

Example:    charge conservation:    

{empty site, occupied site}

   enumerates distinct states with same chargecharge

states carry two labels:

Consider 4-site chain of spinless fermions, with total charge 

all possible charge configurations
of 4-site chain of spinless fermions:
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Which part of 2-site space is missed by            and          ?       

Recall kept+discarded decomposition:

Orthonormality of kept and 

discarded isometries:

Completeness:

Compare action of 1-site 

and 2-site Hamiltonians: 

This part is not 
captured by 1s DMRGThis can also seen by considering energy variance:

Minimized by 1s DMRG, vanishes for converged 1s-GS. Minimized by 2s DMRG, vanishes for converged 2s-GS.

Subspace missed by 1s DMRG but explored by 2s DMRG is the DD subspace:   image

dimension: = huge!It contains  'missing' symmetry sectors (good!), but is huge (bad!)

Key insight [Gleis2022]:                   has significant weight only on small subspace of DD, the 'relevant DD' (rDD) !

Hence, it suffices to expand bond to include only the rDD !

grey arrows: DD orange arrows: 
final selection for rDD

red arrows: 
preselection for rDD

View rDD as image

or image 

Truncated isometries         or         can be found via 'shrewd selection' = (i) preselection, then  (ii) final selection 
(see next section)

(III.1.16) (III.1.22)
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Controlled bond expansion (CBE)

(ii) expand bond 

and construct expanded 1s Hamiltonian: 

(i) Compute truncated isometry    

[for right-to-left sweep]

replace                    

so that initialized version of expanded bond = old bond: 

initial

(iii) Find GS of expanded 1s Hamiltonian:

     (e.g. Lanczos eigensolver), as in 1s DMRG:

(iv) Shift isometry center from           to         :

SVD, truncate

In practice: suppose we want to gradually grow the bond dimension by a factor       per sweep. Then, for each

update, we need to increase bond dimension from an initial        to a final                    , with         .            

Thus, expand from to , with 

  and in (iv), truncate from 

Typical choices: 

to 

The truncated weight at step (iv), say        ,  serves as error measure.

since

Note: (i) to (iii) constitute a strictly variational algorithm, guaranteed to lower the energy.
However, (iv) involves truncation, which can lead to slight energy increase. 
Hence the CBE algorithm, just as 2s-DMRG, is not strictly variational.   [McCulloch2024]
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CBE.3

Goal:               truncate                                      to minimize

Instead, use `shrewd selection' (cheap, efficient, practical, though not strictly optimal), involving two steps: 

(i) Preselection: truncate                                      to minimize

(ii) Final selection: truncate         to minimize

Truncate central bond in presence of its environment, 
with MPO bond open (to reduce numerical costs)

orthogonal 
complement

truncated
complement

orthogonal 
complement

preselected 
complement

preselected 
complement

truncated 
complement

Truncate again, now in with MPO bond closed, 
as appropriate for 

Details of preselection [steps (a-c)] and final selection [step (d)]:

(a) Canonicalize right side (shaded pink) of diagram, assigning its weights to central MPS bond.

arrows indicate bond being 
opened before doing SVD

-

shading and symbols in 
matching colors indicate SVD 
input and output

-

output is written as          or
when involving no or some 
truncation, respectively

-

use -

(b) Truncate central MPS bond, (reason for this choice: see (d))

(c) Regroup, to combine truncated MPS bond and MPO bond into composite bond of dimension 

(d) Final selection: close MPO bond, then truncate central MPS bond: 

If using exact arithmetic, this would involve no truncation. In practice (numerically) zero singular values        

               , may arise. They must be truncated to ensure , so that  image image 

To ensure 1s costs for this step, we need                              , hence choose                      in (b). 

(e.g.                   ).

Optimal truncation can be achieved via SVD; but that has 2s costs, 

Important: By design, every step has at most 1s costs, 

Moreover, CBE captures the most most relevant contributions from 

2s accuracy and convergence 

per sweep, at 1s cost !!

3. Shrewd selection
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Comparison of three truncation settings:
grey: optimal truncation via SVD (grey)

        serves as a reference

Take-home message:  optimal truncation requires
computation of a huge amount of singular values,
most of which are discarded anyway. Those that are 
kept can be very well captured using shrewd selection!

orange: moderate preselection,                    

            then final selection

            agrees rather well with reference!

brown: severe preselection, 

           then final selection

           misses some information from reference

Results for CBE-DMRG:

(a) CBE and 2s DMRG have same convergence rate per sweep.

(b) CBE has 1s costs ~        , much faster than 2s DMRG ~

(c,d) Reliable convergence with increasing       , decreasing 

tunes quantum phase transition between two phases
with different Fermi surface volumes.

It's not necessary to line up all kids from tallest to shortest 
if you just need a few big ones to help you with something!
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CBE.4[Li2022]

Schrödinger equation for MPS:

Recall 1s TDVP:

1s TDVP algorithm (sweeping right-to-left):

(1) Integrate from         

(2) QR factorize 

(3) Integrate from          

(4) Update with 

1s-TDVP has two leading errors:   
(i) Lie-Trotter error, can be reduced by higher-order integration schemes, e.g. third-order, with error 
(ii) Projection error, quantified by 

Advantages of 1s TDVP:  applicable to long-ranged Hamiltonians, numerical stability, unitary 
time-evolution, energy conservation  (because truncation happens before, not after, time step!)

Projection error can be reduced by using 2s TDVP, 

Then projection error becomes 

However, after time step, another truncation is needed to bring down bond dimension from           to       .

This truncation-after-time-step leads to non-unitary time-evolution, non-conservation of energy.

CBE-TDVP

Key idea: use CBE to reduce 2s contribution to           , given by 

          is the same object is that minimized for CBE-DMRG!  Hence, CBE is also useful here!

We add just one step (0) to 1s-TDVP algorithm (when sweeping right-to-left), using:
Step (0): Expand for bond      , using 

finds that part of            that is 
not in 1s space but in 2s space

4. CBE-TDVP 
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Other steps remain as before, except that in step (2), QR factorization is replaced by SVD, to 'trim bond
dimension from                  to final value           , chosen such that truncation error is 
(for early times), or such that                        (for later times, to limit computational costs).
Trimming error is characterized by discarded weight,            , which can be controlled or monitored.
TDVP properties of unitary time evolution and energy conservation hold within                   .

Benchmarking CBE-TDVP for exactly solvable XX model:

Phonon-induced pair attraction during electron-electron scattering

(a) Without electron-phonon coupling, two wave packets bounce off each other due to strong U repulsion.
(b) With electron-phone coupling, the wave packets tend to stick together, while (c) phonons get activated.
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CBE.5

Another scheme for bond expansion with 'strictly single-site (3S) costs was proposed by [Hubig2015].

The states to be added are generated by acting with 'part of a single-site' Hamiltonian onto            :

[Gleis2022, Supplement S-3]

During right-to-left sweep: 

'mixing' parameter, typically < 1,  
which has to be adapted during 
sweeping (see Sec. VI of [Hubig2015])

The bond between sites        and            is expanded from         to         

unitary

This 'enriches' the left bond with states generated by 

(a) SVD to identify the dominant bond states.  

(b) Truncate back to original bond size,                                 and identify 

(c,d) Use              to expand            and                , as in step (ii) of CBE.  

Finally, update           with ground state of  

Mixing with           new states can bring in good quantum numbers (good!), 
and do so efficiently if       is large (e.g.         ).                        
Step (b) can eliminate bad quantum numbers (good!). 
But since no D projection is involved, some K states that are actually useful for ground state 
can also be truncated, hence (b) can actually cause the ground state energy to increase 
(not so good!), by an amount depending on     . Further sweeping will push energy back down.

through a direct sum with

CBE and 3S initially converge 

at the same rate w.r.t. CPU time, 

but  3S eventually slows down and 

takes longer to reach final

converence compared to CBE.

But:  3S with strong mixing (e.g.         ) can be more efficient than CBE for getting out of a 'wrong' minimum.

has to be normalized explicitly, since 

5. CBE + mixing
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CBE + mixing 

(ii) Expand bond 

and construct expanded 1s Hamiltonian: 

(i) - (iii):  Just as for pure CBE:

[for right-to-left sweep]

replace                    

initial

(iii) Find GS of expanded 1s Hamiltonian:

     (e.g. Lanczos eigensolver), as in 1s DMRG:

      If          : SVD and truncate on  bond       
      (but do not shift isometry center): 

SVD, truncate

So, we recommend [Gleis2022, Section S-3(B), final paragraph] to use CBE + mixing   (CBE +    ), 
to combine strengths of both methods: 
- 3S with strong mixing facilitates efficiently escaping from metastable minima; 
- CBE yields rapid descent to bottom of close-by accessible minima. 

(v)  Only if           :
      Perform 3S mixing with       on bond     
     (but do not find another GS):   

Now isometry center is located at site     . 
Then replace                                    

(i) Compute   

(iv) If           :Shift isometry center from         to       :

      (just as for pure CBE), and skip (v)

SVD, truncate

Use              in bond-growing phase, then set               for a few sweeps before measuring errors and observables.  

To perform a series of computations at different bond dimensions                            to monitor convergence:
- Converge an         MPS; then measure errors and observables. 
- Converge a          MPS: initialize it with the previous        MPS, 
                                     then perform one or two sweeps with            to escape metastable minima,
                                     followed by a few sweeps with            to reach bottom of new minimum,
                                     then measure errors and observables. 
- and so on for larger       .  
This strategy leads to quick convergence while avoiding local minima.
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(a) 1D ring at half-filling: CBE gets stuck for a 
while in a metastable minimum     : 
the ground state for open chain. 
CBE +     and 3S do not get stuck there. 

Inset of (a): 
Initial state = CBE ground state for  
CBE +            gets unstuck, 
while CBD and 3S with                remain stuck.

(b) 1D ring away from half-filling: 
CBE converges fastest. 

(periodic boundary conditions)

(c,d) 10 x 40 cylinder:

(c)  CBE +     converges fastest. 

Benchmark comparisons for free spinless fermions: [Gleis2024b] = reply to [McCulloch2024]

(d) For given bond dimension, 
     CBE +      reaches lower energy than 3S

Conclusion: CBE +     yields 
very favorable convergence properties !
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