Energy variance, controlled bond expansion (CBE) CBE.1

1. Energy variance [Hubig2018]

When doing MPS computations involving SVD truncations of virtual bonds,

the results should be computed for several values of the bond dimension, D ,

to check convergence as D — @ . Often it is also necessary to extrapolate the
resultsto D = @ , e.g. by plotting results versus /1)  or some power thereof.

° '/p

However, for some computational schemes, it is not a priori clear how the observable of interest scales
with D , nor how it should be extrapolated to D=w an example is ground state energy when computed
using 1-site DMRG with subspace expansion [Hubig2015], because it does not rely on SVD truncation of bonds.

Thus, it is of interest to have a reliable error measure without requiring costly 2-site DMRG. A convenient

scheme was proposed in [Hubig2018], based on a smart way to approximate the full energy variance,
E

.2
Ag:= “(H -E )l(fuz S (1!([(|-|- G)I'LD (= zero for an exact eigenstate) (1)
= (ql(flliw - E‘, with E = <ZHH4)19> ()

Then extrapolations can be done by computing quantity of interested for several .D,

but plotting the results via AE , and extrapolating to l)p_ —> 0

exact
If quantity of interest is energy, then extrapolation is linear, E ﬁ (A E) = Eﬁ + Q- Ag )

Computing <\H H 1[ l}) directly is costly for large systems with long-ranged interactions, l ''''' [T7]
such as 2D systems treated by DMRG snakes. Also, computing A¢  as the difference || ﬂkl
between two potentially large nhumbers is prone to inaccuracies. [Hubig2018] found lebcck
a computation scheme in which the subtraction of such large numbers is avoided a priori. ’mi fi

Key idea: use projectors P"- onto mutually orthogonal, irreducible spaces V ne

Fé
M(
Recall (2.11): .ﬂ‘\, = 10(®£ = Z P"‘l’/ PM‘L ,Pw‘,L - Su PA'L -
A=D
completeness (&) orthogonality
with — P™5 = |40y ©

.16) £ L&) £
A AL
¢=1 ‘ (X l= ‘ 0t¢

Insert completeness into
definition of variance:

hi
AE

(]

() A £ WL
Ag = 4wl(u~€3;[~? (G-eY) 1) = (3)

7 M

Now two crucial simplifications occur:
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Now two crucial simplifications occur:

oL & a -
A = Lyl(H=-ENRI(G-CY) 1) = (E-ENE-€) = o @
& PO+ largest contribution to variance cancels by construction!
n>o

a wL R o (5,6)
A% = Lyl(H-EN (G-ey) gy = Ll AP H Iy since PEPy JTp (0
. ) o ,

= PYL PUYL (Tsar211)

B Y (0

In practice, approximate A c by the first two nonzero terms:

A & Ag = Ay @ = | LMY « Glielyy| @

A Le
(11) is exact if longest-range terms in H are nearest-neighbor, because then p(“%)i- H |1]5) =D

N _ [Gleis2022a] (6)
Explicit computations:
('I"SJ-II.Z.IG) £ 2k
W=i: Real P'“= 7 ,_"é:‘*jc&f—‘r_éi = 2 Ty bo
=1 L Bt t=; ' mutually
orthogonal!
(TS-1.4.15)
- @0 A LA o L a DK .
Dg =L%[H 2 Hlyy = £Z<1HH Pren HIW) bs)
£
s : £
5; = A = Z

~
l

(o))
"

[sE

Dd-D
We would like to avoid computing ® T explicitly, because of its large image dimension. So, exploit
d
completeness of kept together with discarded isometries: :#3 = } ~ %l
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also follows from (16) using [I = C
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2. Controlled bond expansion (CBE) for DMRG  [Gleis2022] CBE.2

Problem: when exploiting symmetries, 1-site DMRG performs poorly, because it does not explore
subspaces with different quantum numbers. An early remedy for this is 2-site DMRG, but that is
computationally much more expensive than 1-site DMRG. Subsequent suggestions for 1-site DMRG with
symmetries are 'density matrix perturbation' [White2005], the 'center matrix wave function formalism

[McCulloch2007], 'subspace expansion' [Hubig2015], and 'controlled bond expansion' (CBE) [Gleis2022],
which performs best.

- a!S
~ e
Reminder of 1-site DMRG, A A ¢ Bu B 0
in site-canonical representation: ) 1 o f’ g r r
Local basis: |, 6, p D= \a()!_'\,y)\ﬁ)e“ \’Oq-n 184
:/Ilnlmlze energY with censtralnt_of | —r- {y| |-|\ 4) - Vylg )] = 0 @)
ixed normalization, 1 site at a time: 2 ¢
Co
., Ce
- N T 17 1T ->-?<— S
¢ y , < close
¢« " 3 X o« [- T zZipper
Ce y
T a“ls“ 1814 C:’h
{HQ\ AU(Q\ =E(Q] = E—)—éa— ©
o = (Ma,ﬁs

W cost ~ (.0(1)50( w’)

IS
Solve for 'eigenvector' with lowest eigenvalue, say ”(4 , then do SVD on it to move to next site:

15 1
Lt Bu | ) (S By ) reore f, Cen 5
- 3 =
"]o(“_f—b . D D CRERS 1.(1) Z*D
Important: dimensions of C  are fixed, hence truncation is neither needed nor possible!
C€+(
-Remir-lder of Z-eite DMRG, - N a . [} . Ae /\,_ Beer , B R
in 2-site-canonical representation: Y T % 7 o r p f | ¢ f
. . - —— - —
Local basis: |, 6,¢ \A) W) ¢>\°'>\0(), \OOQ_‘ T \\D“l
)
Minimize energy two sites at a time: IRAYAT I e
28 2§ _ z = E
{H,L] Q\q’t} = E Hl\ 4
o =(%,¢,¢ R 3 2
16,9, 1) “cost~ 007 4%+ D o)

Solve for 'eigenvector' with lowest eigenvalue, (M 5) , then do SVD and truncate (!) to move to next site:

Vs “
truncate Py ~ QR
¢ 2 A l n!u

SVD )
D.{ iDA T)o(] I'D‘“‘ I ' @)
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Problem of single-site optimization: it is constrained to a variational space defined by outgoing state spaces

[°‘>t.( l I%u . If the ranges of quantum numbers &.( and &[5 for these spaces are too small to accurately
represent the ground state, single-site DMRG has no way to enlarge them.

Two-site optimization does not have this problem: the action of H on two sites enlarges bond dimension jn
between, adding the full range of quantum numbers needed on that bond. If a certain quantum number was
missing on that bond before the action of H, but appears afterwards with non-negligible weight, it will survive
after SVD and truncation. Hence: two-site optimization can add missing quantum numbers, if needed.

2 2,2
But this comes at a cost: effective two-site Hamiltonian has dimension D el « O 4 . (9
By contrast, effective one-site Hamiltonian has dimension D*d x D'd .

Example: charge conservation:
Q . 0. all possible charge configurations
&I, fo = &2 (19) 21, 1 Lo, of 4-site chain of spinless fermions:
bl | z' g 6, 6 66, 6 6 0, ¢
\ VO, 102 O3 L 03 6,
g, efo, ose <<%42°%
states carry two labels: | ] o ’-—‘O< 58y =09l g
{empty site, occupied site} - s DOt
[0 = (89,3, eqpuantlaice gD} TNop e 50
/j i O <l : '.‘ i‘ ul
charge enumerates distinct states with same charge X 100 < () % °
{o 1950
o - <= (i
Consider 4-site chain of spinless fermions, with total charge (Slq =7 } < R
) = S oToo=ani g
Poei B oos b Deew A Dy 8, De-
* : - ; AN
l&) 18 3,) 162 2,) lez,35) | Q¢
€ 5P0~\?\6\)} esgauﬂo’. S—D} ¢ SPowﬂﬁ §2 "3»3 c SPov\ﬂ6\ §2 <364>)] E]
0 0 : o | O | o 2 01 o
° | Il o » 2 ol 1 o
| 1 2 e z Leed
I | 2 I o 2 lo 1 o
z ! 2 't o 2 1
6 ¢foil 6, ¢foi{ & efoul 6, ¢foil
Ifbond (=2 istruncated (e.g. dropping 8. =0), that causes missing states on all later bonds!
Cs
1s DMRG:
(
= g & _if_Qz updated C, has same )
s bond dimensions as initial ¢
% g :
2 3

1-site optimization of truncated 3 will never find a good ground state if latter has non-negligible contributions
from missing blocks.

2s DMRG: Az G q )
_ e o, ! G 8y updated A. C3 can have larger
‘I Y L_ bond dimensions than initial ﬁz,('x
6 63 2 3
Q, e, f’

contains all quantum numbers consistent with ©, t6, =@, = @

-9,
2-site optimization can reinstate missing blocks!
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s
Which part of 2-site space is missed by g and Hﬂu ?

. o Ag AE Aﬂ ‘B]1 Bg Bg
Recall\lfept+d|scarded _cl_ecomposmon: lel_D @ D_;{_ E‘_d D—p_ —7_ _|7_ (s)
D.\.D: dD , D= D(d*')

1 B,
AlA, = — (= 1x, F_T) =)=
Orthonormality of kept and et [j:* (=1 BB, :BQ =15, (e
discarded isometries: @:: [: ]1;, @:: N :D :) _ ;1’ :D ) o
/ ¢ ¢ 7

Completeness: %z + %} = :)| =1y :% -+ :]};: =|c =1}, 773}
‘ ¢ ¢ ¢ 1 / ‘

Compare action of 1-site

and 2-site Hamiltonians: E@ = g% =%:%@% (17a)
£ 41 £ £41 & £41 £ £+1

- HEE-EEEY -
£ I+1 €41 £ i1

This part is not
This can also seen by considering energy variance: captured by 1s DMRG

(IL.1.16) o 9 . (.1.22) o 4 2
Ap = > @ = 0P Hel AR = ) dlatil)
’11\ ¢=1 ¢ (1%0) /« =1 ¢ 0+1 (t2h)

Minimized by 1s DMRG, vanishes for converged 1s-GS.  Minimized by 2s DMRG, vanishes for converged 2s-GS.

Subspace missed by 1s DMRG but explored by 2s DMRG is the DD subspace: image (A @By (Tr® V))

It contains 'missing' symmetry sectors (good!), but is huge (bad!) dimension: D D = huge!
(19)

8,5
Key insight [Gleis2022]: HcS '4« ¢ has significant weight only on small subspace of DD, the 'relevant DD' (rDD) !

red arrows:
grey arrows: DD preselection for rDD

2s,1,2s
E‘\{\\\\lllmll//‘ Hy™; Q\\
s\\\‘" ///// S ls

+1wﬂ+1

‘;-“

arrows:
final selection for rDD

\\Hnmr/// ,

\‘W///

\\\llml//
‘{\\\\\\ \[/ /// ///

(20

Hence, it suffices to expand bond to include only the rDD ! View rDD as  image (Avtf ® §é’+1 ('T[ ® 7‘)3
or image (Ag R BBH(T[ X ‘|7'))

Truncated isometries " or 77~ can be found via 'shrewd selection' = (i) preselection, then (ii) final selection
(see next section)
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Controlled bond expansion (CBE) [for right-to-left sweep]

(i) Compute truncated isometry ~ Ag" (7)

(i) expand bond ¢

v~ initial
I AE > AE ® AEI AEX [u-( C;_T_’l] C€+1
replace — A= = ~ ! — - Cj__?j
DD DIYD "D ip D J0n+b T n«_?_ﬁ'd D o (20

so that initialized version of expanded bond = old bond:

. ?] _ Ay Cew
A:‘P("', = ,fl( (l C 2 N f (zv)

g D ND
L lﬁ:’ d
d since a: =0
and construct expanded 1s Hamiltonian: Fisex _ D+D ¢ 5D
AN = €3
(41 /+1
~ P ~ 0xp
Cc
(i) Find GS of expanded 1s Hamiltonian: =g £ Cers (20
(e.g. Lanczos eigensolver), as in 1s DMRG: [ 3 ﬁ+i1 ] T
0 E %p  SVD, truncate ¢ g
] L+ L e (
(iv) Shift isometry center from Liv to L b - ) = D —>T-<—T—D ()
. +D P, ; D ’

The truncated weight at step (iv), say f , Serves as error measure.

In practice: suppose we want to gradually grow the bond dimension by a factor ¢ per sweep. Then, for each

update, we need to increase bond dimension from an initial D; to afinal D, = « D; , wither > . (2¢)
Thus, expand from D, to 0+ 5 = Dy [1 £8) ,with 050 (22)
and in (iv), truncate from Dg(/+ §) to D# ) (28)
Typical choices:  o¢ = 11 S =01 . (zq)

Note: (i) to (iii) constitute a strictly variational algorithm, guaranteed to lower the energy.
However, (iv) involves truncation, which can lead to slight energy increase.
Hence the CBE algorithm, just as 2s-DMRG, is not strictly variational. [McCulloch2024]
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3. Shrewd selection CBE.3
HL “’e

Ar

—_ 5 ~ D
Goal: truncate A¢(W) = AF("T) tominimize & = w _
orthogonal truncated _r_
complement complement D D
Dlg 4D

Q)
Optimal truncation can be achieved via SVD; but that has 2s costs, @( o43)
Instead, use "shrewd selection' (cheap, efficient, practical, though not strictly optimal), involving two steps:
_ D ~or D=D D D
(i) Preselection: truncate Ag() — A () to minimize €, = o D D ~D D
orthogonal preselected - [
complement complement DD d T d
Truncate central bond in presence of its environment, Did afD ,
with MPO bond open (to reduce numerical costs)
R o D<D
(ii) Final selection: truncate A}" ()— AT (7)) to minimize
preselected truncated (3
complement complement
Truncate again, now in with MPO bond closed,
. (24 s
as appropriate for  Hy 4,
Details of preselection [steps (a-c)] and final selection [step (d)]:
- arrows indicate bond being
opened before doing SVD ﬂ&ﬂ—&-}*
- shading and symbols in w D D/u
matching colors indicate SVD ‘,‘\ Cj
input and output SV
1 ! — DD = ]
- output is written as (ASV or st ‘D <D=D<D= D(d*l)‘ % JwD)’ D'
when involving no or some T 5 o - n
truncation, respectively | |D=D'w=D
TSRS
£ £ l - - - = —_
DYDb' pib Y
= = d d
Vi ’ £
(a) Canonicalize right side (shaded pink) of diagram, assigning its weights to central MPS bond.
(
(b) Truncate central MPSbond, D — D (reason for this choice: see (d))
N ]
(c) Regroup, to combine truncated MPS bond and MPO bond into composite bond of dimension D = Dw
If using exact arithmetic, this would involve no truncation. In practice (numerically) zero singular values
(9(!0- 16) , may arise. They must be truncated to ensure @: = O, so that image (‘t[) C image('ﬂ') .
A ~
(d) Final selection: close MPO bond, then truncate central MPSbond: D — D 2 1)  (eg. 5 =0.1D).
{ A
To ensure 1s costs for this step, weneed D& =D = D, hence choose D' = in (b).
Important: By design, every step has at most 1s costs, @(Djd X ) } - 2s accuracy and convergence
A9 1
Moreover, CBE captures the most most relevant contributions from H 2 per sweep, at 1s cost !
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free fermions

Kondo-Heisenberg-Holstein

Comparison of three truncation settings:
grey: optimal truncation via SVD (grey)

serves as a reference

¢ ¥
orange: moderate preselection, D *=D £ /w—*“'
DY = ou Dy

agrees rather well with reference!

then final selection

_ (¥ ¥
brown: severe preselection, D = 2.1 Dy [y5%
D¥ = o1 g

misses some information from reference

then final selection

Take-home message: optimal truncation requires
computation of a huge amount of singular values,
most of which are discarded anyway. Those that are

4
W0 Gy Df — 600 &[d — 3] () D — 7000
e w*[w] = 4[6] d*[d] = 16[32]
® w*[w] = 14[30]
5 1078
s
F10°1°
B
£ 1077
101
500 1000 1500 5104 1010  15.10%
3 %107\ #singular value #singular value >11[] 4
’ D" preselection|
— 5 D; none 1.6
w — 5 Df/w* moderate
—,:5 — 501D /w*  severe |,
=
?n 1.2
;‘ !
(b) L — (d)
0.8
20 40 200 400 600 Z
e

#singular value

#Fsingular value

(a) d*d]: 12]16] [HH, w*[w]:4[6][ (b) D}, = 500 -
£
-3 fits: 2,
5 —az?+ bz +ec é
Diax 150 300 600 Seg-mnm--—- az+b * 2site 125
"[CBE — g CBE g
9 2-gite === mmm aa- 0 =
0 4 8 12 16 20 6 9 .12 15 18
i d %10~
10
8
6
4
8104

(a) CBE and 2s DMRG have same convergence rate per sweep.

(b) CBE has 1s costs ~ (9(‘1), much faster than 2s DMRG ~ 9{‘{1)

(c,d) Reliable convergence with increasing .Dv, decreasing _f

12-CBE Page 9

Jx=5
: (a) JH=0NII)I}1‘“=0 (b) Ju =05 Ng}‘fx:()
=i

o d'ld: 4 [8f d*d): 4 8]
w*w]: 10[18] w*[w]:14[30]

(¢) Ju=0Nji>*=3 (d) Jy =05 N3 =3
L dd):16[32] R [d]:16[32]
T w'w]:10[18] w*fw] : 14[30]

107 107 1077 107 105 1077
£(6=01) £(5=0.1)

kept can be very well captured using shrewd selection!

It's not necessary to line up all kids from tallest to shortest
if you just need a few big ones to help you with something!

FIG. 3. Hubbard-Holstein (HH) model: (a) Convergence
of the GS energy versus number of half-sweeps n, at fixed

d* =3(Np* + 1). Ey was obtained by linear £ extrapolation of

data from Dj,, € [1000,1200]. (b) CPU time per sweep for
various d* at fixed D, showing d* (CBE) vs d*? (2s) scaling.
Hubbard cylinders (HC): Error in GS energy vs & for (c) 10 x 4
and (d) 10 x 6 HCs, obtained with CBE (black) and 2s (red)
DMRG, for various D}, (legends). Since 2s CPU times far
exceed those of CBE, 2s data is only shown for Dy, < 10k
Reference  energies Ey = -27.8816942 (10 x4) and
—41.7474961 (10 x 6) are obtained by linear £ extrapolation

of the four most accurate CBE results to £ = 0 (gray line).

w

+
HHH = _Z(C/GC/‘H(T + HC) + O.SZII/TH/J'
‘o 4

+0.5) by + V02 (neq + sy — 1) x (b) + by)
¢ ¢

.. )
Hye = - Z (C;acf’a +He)+ SZ””’T”“ "‘?‘
7

(£ )0
FIG. S-10. Error in GS energy versus discarded weight for the
Kondo-Heisenberg-Holstein (KHH) model on a 10 x 4 cylinder,
with (a) only Kondo coupling, (b) Kondo and Heisenberg
coupling, (¢) Kondo and Holstein coupling and (¢) Kondo,
Heisenberg and Holstein coupling. Legends state our choices
for Ju and N[}\™, and corresponding values of d*[d] and w™ [w].

HKH:_Z ( ZSf-Sff

ChoCers +He) + Tk Y Se-se + !
(£ 2 2 (e.e)

IK tunes quantum phase transition between two phases
with different Fermi surface volumes.



4. CBE-TDVP  [Li2022]

CBE.4
Recall 1s TDVP: . Hlptmn )
VN .
Schrédinger equation for MPS: \ Ao A
_ A ;P H e lmen)
A (Flmee)]) = P'SH Ig[mee))) )
et 1 )
A A Ay Cey Beya By By [
Ve N Y Yoo v YT T /L%/
1s <z 1
TR R
f=1 1 ¥ Iy r=1 11 Iy &z Pates C 5

1s TDVP algorithm (sweeping right-to-left):

L Lue
. (s , A ﬁ‘ b}
(1) Integrate ICQH = l-lm Co4, from t — 4= 448 A A
(2) QR factorize (g, (1) = Aglt) By (1] B )

. A A I\ur T
(3) Integrate tAg = - inb Al from 4 — 1

B )
(4)Update  AglH) (y, @) = Ay A, 1) By, (1) with ;\ %J T
=3Cg({) L 24

Advantages of 1s TDVP: applicable to long-ranged Hamiltonians, numerical stability, unitary
time-evolution, energy conservation (because truncation happens before, not after, time step!)

1s-TDVP has two leading errors:

(i) Lie-Trotter error, can be reduced by higher-order integration schemes, e.g. third-order, with error 0(53)

(i) Projection error, quantified by A‘, = n (1~ \3'5 ) ﬂ 4 ) 1

A "
Projection error can be reduced by using 2s TDVP, 4 [Blmee)]) = PPH 1g[mee))
et ”
Then projection error becomes 9 21 21
A s = Z %:% _ Z (%%
AP = l\(‘*PZS)HW(DH =1 11 lp & =2 11 Iy ‘y

However, after time step, another truncation is needed to bring down bond dimension from D dtoD.

This truncation-after-time-step leads to non-unitary time-evolution, non-conservation of energy.

CBE-TDVP . R
2L s 1\
Key idea: use CBE to reduce 2s contribution to AF , given by A P = |\ P () -f ) H Y1) H
rV—

= = ’ finds that Ptzt Y thati

21 21 _ inds that part o at is

P =0 %) %% , Ap = Z ' not in 1s space but in 2s space

14 (+1

P is the same object is that minimized for CBE-DMRG! Hence, CBE is also useful here!

We add just one step (0) to 1s-TDVP algorithm (when sweeping right-to-left), using:

~ ex £x (
Step (0): Expand D — D+ D forbond € ,using A, — A, , Cg,,, - Clnp, Helf: - H;;/‘jp
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gt
A;N
D cﬂ D

A, Asx
Djl)@ >

lex

HE—H

’+1

D |\D+5fdi

ex
41

Cﬁ’ja

D

41

Other steps remain as before, except that in step (2), QR factorization is replaced by SVD, to 'trim bond

dimension from D+ B  to final value Dy

(for early times), or such that D¢ =

, chosen such that truncation error is < /o z
Dwayx (for later times, to limit computational costs).

Trimming error is characterized by discarded weight, Z [+ ) , which can be controlled or monitored.
TDVP properties of unitary time evolution and energy conservation hold within @ ( { /f))

Benchmarking CBE-TDVP for exactly solvable XX model:

5 [()EE |
—:—

(a) )
X 0.2
: N 120
z 0 D, —
& 25 et 80

(../: z : - o)
102 () 2TDVP (d) CBE-TDVP
(552 s
S 106
= 40 €. e
107 £ —
OF 2 - o
10'14 o, u?’""""“""’“\;“‘ ..
0 20 400 2 ]
Time Time
Hxx = >2,(SFSF ., + SVSé’+1) O = 11 L 1)

FIG. 1. 100-site XX spin chain: Time evolution of a do-
main wall, computed with time step 6 = 0.05 and U(1) spin
symmetry. (a) Local magnetization profile S7 (t). (b) Entan-
glement entropy EE(t) between the left and the right half of
the chain. (¢) Bond dimension Dg(t) and its pre-trimming
expansion 5(#) per time step, for Dy.x = 120. (d,e) Error
analysis: magnetization §5%(t) (solid line),i.e., the maximum
deviation (over £) of S7(t) from the exact result, , energy
0E(t) (dashed line), and discarded weight £(t) (dotted line)
for Dmax =40 (red), 80 (blue) and 120 (black), computed with
(d) CBE-TDVP or (e) 2TDVP. Remarkably, the errors are
comparable in size, although CBE-TDVP has much smaller
computational costs.

Position

Position

0.5

_ITDVPpon_ |, o
@ - 10
______ -4
0 -- 10
Dpax 120 o0 8
I 10
10 -
1075 == -12
05 10° = =— 110
0.5
Dy/5 250
Dy 200
R ™ 100
~ 50
05 R
0 20 40
t
L“E 0 t t!]]ﬂX
@& F - Z
‘E I 1 B 1
;/\ fmm( t= fmnx —t 0
F@ = |(\I',(ﬂ|‘l'+(t)>|2 ; T=tmax—t € [0, tmax]

FIG. S-1. (a) Forward-backward time evolution for the com-
putation of F(t). (b,c) Back-evolution of the domain wall,
described by |W_(7)), computed using (b) CBE-TDVP and
(¢) 1ITDVP. (d) Time evolution of § F(f) = 1— F (%), computed
via 1TDVP with D = 120 (dash-dotted line), and via CBE-
TDVP using three values of €, and either with Dya = 120
(dashed lines) or Dynax =00 (solid lines). (e) Time evolution
of the corresponding bond dimensions D¢ (%) (solid lines) and
D(%) (dots). (The solid green curve shows Ds/5.)

Phonon-induced pair attraction during electron-electron scattering

40| (a) S*(z,t) g=0] | (b) 5%(z,1) g=1
£ 20
g ——
W ——
A -200p1 0 0.1 o1 0 04

40| T | |

2000

40| (c) nPh(a,t) g=1[|(d)g=1 - 5 11500
£ 20 = 1
z OFES I
~-2019 01 02 =" 10

-40 | [ m o g T 10712

3 6 9 12 3 6 9 12
Time Time

HPH = Z [/“lemJlgl + prhb;bg
4 4

+ g Z(C}ac[+lg+h.c.)(7t —+ bz+b€fb}+l 7b[+l)

%“x W Ay -

?h =8, 0\10(‘/\‘9\\ 1‘1) = 36
FIG. 4. Peierls—Hubbard model: Real-space scattering of two
electron wave packets, for U =10 and wp =3, computed with
§ = 0.05, nBh, = 8 and U(1) spin symmetry. (a,b) Spin
magnetic moment S*(z,t) for ¢ =0 and g =1. (c) Phonon
density nPP(x, ), (d) bond dimensions, and (e) error analysis:
energy dF(t) (dashed line) and discarded weight £(t) (dotted
line), all computed for g=1, with Dpyax = 500.

(a) Without electron-phonon coupling, two wave packets bounce off each other due to strong U repulsion.
(b) With electron-phone coupling, the wave packets tend to stick together, while (c) phonons get activated.
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5. CBE + mixing [Gleis2022, Supplement S-3] CBE.5

Another scheme for bond expansion with 'strictly single-site (3S) costs was proposed by [Hubig2015].

The states to be added are generated by acting with 'part of a single-site' Hamiltonian onto  C,,:

(f+1 (b)
£+1 Dw
P eE ﬁ ﬂ—H]T {H{H

CESI (c) Cy Bé+1
5 - (T DFD

d

d <D
15,38 (@) D
V4 V4

The bond between sites [ and f+1 isexpandedfrom D to D + Diws

During right-to-left sweep:

C
through a direct sum with DUJ_{ 5 [H-a ~~— 'mixing' parameter, typically < 1,
/ w which has to be adapted during
unitary D sweeping (see Sec. VI of [Hubig20157])

This 'enriches' the left bond with states generated by

(a) SVD to identify the dominant bond states. B3S

(b) Truncate back to original bond size, T) + Dw —> 1) and identify D_|7D
(c,d) Use D—|7_D to expand C 35) and l—l‘!s 35 asin step (ii) of CBE.

T’\ has to be normalized explicitly, since % ” :D

3s
Finally, update C, with ground state of He 15,3

Mixing with D1 new states can bring in good quantum numbers (good!),

and do so efficiently if o¢ is large (e.g. o/ =1).

Step (b) can eliminate bad quantum numbers (good!).

But since no D projection is involved, some K states that are actually useful for ground state
can also be truncated, hence (b) can actually cause the ground state energy to increase

(not so good!), by an amount depending on < . Further sweeping will push energy back down.

. *

51071 Dinax 150 300 600 |  CBEand 3Sinitially converge
) g .
= ] at the same rate w.r.t. CPU time,
m?.i T e but 3S eventually slows down and

t T | takes longer to reach final
e 1 converence compared to CBE.
0 1000 2000 5 10 15 20 25 30
CPU time [s] Tig

FIG. S-8. Error in energy for spinful free fermions on a 10 x 4
cylinder versus (a) CPU time and (b) number of half-sweeps
ns. Fex is the exact ground-state energy.

But: 3S with strong mixing (e.g. &/ = [ ) can be more efficient than CBE for getting out of a 'wrong' minimum.
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So, we recommend [Gleis2022, Section S-3(B), final paragraph] to use CBE + mixing (CBE + &/ ),
to combine strengths of both methods:

- 3S with strong mixing facilitates efficiently escaping from metastable minima;

- CBE yields rapid descent to bottom of close-by accessible minima.

CBE + mixing [for right-to-left sweep]

(i) - (iii): Just as for pure CBE: (i) Compute AEY ("7). (i) Expand bond ¢

v
~ initial
AL A A ap (o Cxi ™ G
c— - )
replacequD qu D.D Dd:{ D¢ 5 T — —?—D | jzi1
. . 1s,ex D
and construct expanded 1s Hamiltonian: H7™ = % E_.#._%
r
(iii) Find GS of expanded 1s Hamiltonian: aqﬁ% Cee:f
= E
(e.g. Lanczos eigensolver), as in 1s DMRG: 01 T
(iv) If & =o :Shift isometry center from L+1to A : A, Cgsy SVD truncate  r~, R, s
. . b _q'_b—,\_o" D ~ D -)T<—r_ D d
(just as for pure CBE), and skip (v) . D4+D 4\* ) D ]
A Ns'
If o 0 : SVD and truncate on bond [ C g.P SVD, truncate A, (g,

~

(but do not shift isometry center): :1 D1 + DT x 1 D

(v) Onlyif o{ £0:

~9
) C£+1 Dw Hl (a)
Perform 3S mixing with & on bond 4 D ?D ﬁ — UD(w+1)

(but do not find another GS):

CESl (_C) B€+1
Dd? D = | dl () DYD
~ NS
Coer o> B

Then replace T—x—D — Dd Dd D

Now isometry center is located at site { .

Use o = | in bond-growing phase, then set o = o for a few sweeps before measuring errors and observables.

To perform a series of computations at different bond dimensions D < D= < ... to monitor convergence:
- Converge an D, MPS; then measure errors and observables.
- Converge a D . MPS: initialize it with the previous 1D\ MPS,
then perform one or two sweeps with oz =1 to escape metastable minima,
followed by a few sweeps with ¢{ =0 to reach bottom of new minimum,
then measure errors and observables.
- and so on for larger D« .
This strategy leads to quick convergence while avoiding local minima.
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|E — Eex|/| Eex]

Benchmark comparisons for free spinless fermions: [Gleis2024b] = reply to [McCulloch2024]

*
) D = (oo
100 X107 - 10°
2 b
15 (b)
101g L6 : 107" %
1.4 5]
i 1.2 =
102 0 1L.n, 3 45 ¢ 102 [I;
CBE+(M (O!:l) |
1073} 38 (a=10"") 10319
—CBE
a
1074 ) 1074
0 5 10 15 20m,25 0 5 10 15 20m,25 30
100 e
CBE+a (a=1) {[(@
. 38 (a=1071) =
10 —CBE )
=
5
1072 H
CBE+a, £ x 2-10% [I'J
— CBE+a, A% =
10 (c) 38, A%
N N N P f i N o . 10°°
0 5 10 15 20nm.25 30 35 103 102 10!
Mg C€ITOr Mmeasure
FIG. S-1. (a-d) Convergence of the GS energy versus number

of half-sweeps n. using different bond expansion methods
at D} .. = 600. Spinful free fermions on a % = 100 ring
with nearest-neighbor hopping at (a) half-filling, (b) filling
N =0.9%. Inset in (a): attempt to converge the CBE MPS
using pure 3S and CBE+a (see text for details). (c) Spinful
free fermions on a %, x %, = 10 x 4 cylinder with nearest-
neighbor hopping at filling N = 0.9, ¢,. For CBE+a, we
used a = 1 for ny < no = 22 and a = 0 for ngs > n,. (d)
Energy versus error measure (A%: 2s variance, £: discarded
weight) for CBE+a and 3S at different D},... Dots are data
points, lines linear fits and squares indicate the extrapolated
energy.
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(periodic boundary conditions)
(a) 1D ring at half-filling: CBE gets stuck for a
while in a metastable minimum
the ground state for open chain.
CBE + of and 3S do not get stuck there.

Inset of (a):

Initial state = CBE ground state for D, = ¢©
CBE + o/ =1 gets unstuck,

while CBD and 3S with & = re~ 4 remain stuck.

(b) 1D ring away from half-filling:
CBE converges fastest.

(c,d) 10 x 40 cylinder:

(c) CBE + ¢ converges fastest.

(d) For given bond dimension,
CBE + « reaches lower energy than 3S

Conclusion: CBE + « yields
very favorable convergence properties !



