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Problem 1 An extended Ising model – (solution: Central Exercise)

Consider a triangular chain of Ising spins, Sj = ±1, with sub-lattice magnetic fields h1,2 and nearest-
plus next-nearest neighbor couplings J1,2 respectively, described by the Hamiltonian:

H = −
∑
j

(J1Sj+1Sj + J2Sj+2Sj) +
∑
n

(h1S2n+1 + h2S2n) . (1)

The configuration we consider is sketched in the figure below, edge effects can be ignored throughout.
The temperature of the system T can be parametrized by β = 1/kBT .

(1.a) (2 Points) Write down a formal expression for the canonical partition function Z (Note: you
do not need to evaluate any sums!).

(1.b) (4 Points) How large is the general transfer matrix for this model? Write down the transfer
matrix T̂ for the special case without fields, i.e. h1 = h2 = 0, but general J1, J2 ̸= 0.

(1.c) (3 Points) Now consider the simpler case where J2 = 0 but h1, h2 ̸= 0. Explain why the
transfer matrix T̂ = T̂evenT̂odd can be written as a product of two transfer matrices T̂even and
T̂odd in this case. Show that they are:

T̂even =

(
e−β(h1+h2)/2+βJ1 eβ(h1−h2)/2−βJ1

e−β(h1−h2)/2−βJ1 eβ(h1+h2)/2+βJ1

)
, T̂odd =

(
T̂even

)T

. (2)

Hint: You don’t need results from (1.b) here!

(1.d) (3 Points) Use the expressions from (1.c) to derive a closed analytical expression for the
thermodynamic free energy F/L in the case J1 = J2 = 0, where L → ∞ is the length of
the chain. To simplify notations, introduce h± = (h1 ± h2)/2.
Hint: A real symmetric 2× 2 matrix M̂ can be decomposed into a sum of Pauli matrices σ̂µ

in the following way: M̂ = m0 +
∑

µ=x,y,z mµσ̂
µ with real numbers m0,mx,mz and my = 0.

This leads to the eigenvalues of M̂ given by λ± = m0 ±
√∑

µm
2
µ.
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Problem 2 Wick’s / Isserlis’ Theorem – (solution: Tutorials)

The goal of this problem is to prove the following important relation, valid for an important class
of partition functions with an action quadratic in some classical continuous variables xj; Namely,
higher-order correlation functions can be decomposed into pair-wise correlations:

⟨xi1 ...xin⟩ =
∑
I

⟨xj1xk1⟩...⟨xjn/2
xkn/2

⟩ (3)

where the sum is over all possible pairings I (or, in the language of QFT, contractions) of i1, ..., in
into pairs (j1, k1), ..., (jn/2, kn/2). E.g. for n = 4 one would get:

⟨xi1 ...xi4⟩ = ⟨x1x2⟩⟨x3x4⟩+ ⟨x1x3⟩⟨x2x4⟩+ ⟨x1x4⟩⟨x2x3⟩. (4)

(2.a) (3 Points) Start from a general partition function with quadratic action (characterized by a
symmetric, positive definite matrix H) and a source term J ,

Z[J ] =

ˆ
dnx exp

[
−1

2

∑
ij

Hijxixj +
∑
i

Jixi

]
, (5)

where we dropped constants and took dnx to assume the appropriate multi-dimensional form.
We will also assume normalization, i.e. Z[0] = 1 and x ∈ Rn such that

∑
ij Hijxixj = x ·Hx.

With the definition

⟨xqxr⟩ =
ˆ

dnx xq xr exp

[
−1

2

∑
ij

Hijxixj

]
, (6)

show that 〈∏
i

xai
i

〉
=

∏
i

(
∂ai

∂Jai
i

)
Z[J ]

∣∣∣∣
J=0

, (7)

where xai
i denotes the i-th component of x to the ai-th power (ai = 0 is allowed).

(2.b) (3 Points) Next, expand (Hx− J) H−1(Hx− J) and rewrite the resulting equation into
an expression for the exponent of Eq. (5). Use a variable transformation to conclude

Z[J ] = exp

[
1

2

∑
ij

(H−1)ijJiJj

]
Z[0] = exp

[
1

2

∑
ij

(H−1)ijJiJj

]
, (8)

and prove that ⟨xixj⟩ = (H−1)ij.

(2.c) (4 Points) Show that Eq. (7) implies that Z[J ] can be written in the form

Z[J ] =
∞∑
n=0

1

n!

[ ∑
i1,...,in

〈
n∏

k=1

xik

〉
n∏

k=1

Jik

]
=

= 1 +
∑
i

⟨xi⟩Ji +
1

2

∑
ij

⟨xixj⟩J1Jj +
1

6

∑
ijk

⟨xixjxk⟩JiJjJk + ... (9)

Compare the coefficients of JaJb, JaJbJcJd, .... in (9) and (8) to prove Eq. (3).
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Problem 3 Phase transitions in 1D; Perron-Frobenius Theorem – (solution: Central Exercise)

In this exercise, you may assume the following theorem to hold without proof:

For the eigenvalue of largest magnitude λ of a real m × m matrix A with all matrix elements
strictly positive (Aij > 0), the following statements are true:

(i) λ ∈ R>0.

(ii) The eigenspace associated with λ has dimension 1, i.e. λ is a non-degenerate eigenvalue.

(iii) λ is an analytic function of all Aij.

Now consider for concreteness a general spin system.

(3.a) (3 Points) How is the largest eigenvalue of the transfer matrix of such a system related to
phase transitions in the thermodynamic limit?

(3.b) (3 Points) Assume the system to be one-dimensional. Which other restriction is necessary
to guarantee a finite size m×m of the transfer matrix in the thermodynamic limit? What is
the general form of the matrix elements of the transfer matrix?

(3.c) (3 Points) Assume the system to be one-dimensional and the transfer matrix to have finite
size m×m. When is the above theorem applicable to this matrix?

(3.d) (3 Points) Assume the system to be two-dimensional. Why does the above theorem not
apply in this case in the thermodynamic limit in both directions? How is this inapplicability
related to the one discussed in (3.b)?
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