
TMP-TC2: Cosmology

Solutions to Problem Set 5 21 & 23 May 2024

1. Basics of Thermodynamics

Comment : Some of the following solutions were created with the help of the lecture
notes by Daniel Baumann. It is certainly worth to have a look at them.

Figure 1 – Sketch for the derivation of the pressure.

1. The phase space density of a system is given by

g

(2π)3
f(k) (1)

Therefore, the number of particles with energy E in a volume dV per unit
volume in momentum space is

dN =
g

(2π)3
f(k)dV (2)

Now, take as a volume on small part of a spherical shell with radius R = |v⃗|t
and thickness |v⃗|dt as given in figure 1 :

dV = dϕdθ sin θR2|v⃗|dt (3)

Only the particles that are directed to the area element dA will reach this
area. So the number of particles coming from the volume dV and reaching
the area dA is given by

dNA =
|v̂ · n̂|dA
4πR2

dN (4)

For a better intuition you can have a look on the purple lines in figure 1.
Assuming that the particles are reflected elastically, the momentum transfer
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of one particle is 2|⃗k · n̂|. The forces resulting from this momentum transfer

is 2|⃗k·n̂|
dt

and thus the pressure is

dp(|v⃗|) =
∫

2|⃗k · n̂|
dtdA

dNA

=
g

(2π)3
f(k)

k2

2πE

∫
cos2 θ sin θdθdϕ

=
g

(2π)3
f(k)

k2

3E

Integration over k gives the final result

p =

∫
g

(2π)3
f(k)

k2

3E
dk (5)

2. In the limit m ≪ T and µ ≪ T , the number density is given by

n ≈ g

2π2

∫ ∞

0

dk
k2

e
k
T + 1

=
g

2π2
T 3

∫ ∞

0

dk̃
k̃2

ek̃ + 1

=
g

2π2
T 3

(∫ ∞

0

dk̃
k̃2

ek̃ − 1
− 1

4

∫ ∞

0

d
(
2k̃
) (2k̃)2

e2k̃ − 1

)
where in the second equality we substituted k̃ = k

T
. Using the definition of

the Riemann zeta function

ζ(s) =
1

Γ(s)

∫ ∞

0

xs−1

ex − 1
dx (6)

gives the result

n =
g

2π2
T 3Γ(3)ζ(3)(1− 1

4
) =

3

4π2
ζ(3)gT 3 (7)

For the energy density we have in the numerator of the first integral a k3

instead of k2. Applying the same steps gives at the end

ρ =
g

2π2
T 4Γ(4)ζ(4)(1− 1

8
) =

7

8

π2

30
gT 4 (8)

where we used Γ(4) = g and ζ(4) = π4

90

3. The calculation here are very similar to the calculations of part 2. The only
difference is that because of the minus sign in the denominator, the zeta
function can be applied directly without splitting the fraction into two parts.

4. In this limit we have E = |⃗k| and thus

ρ =
g

(2π)3

∫
|⃗k|f(k)d3k

p =
g

(2π)3

∫
|⃗k|2

3|⃗k|
f(k)d3k

Therefore, p = 1
3
ρ.
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5. Since we can assume that µ = −µ̄, we obtain the expressions

n− n̄ =
g

2π2

∫ ∞

0

(
1

e
k−µ
T + 1

− 1

e
k+µ
T + 1

)
k2dk (9)

ρ+ ρ̄ =
g

2π2

∫ ∞

0

(
1

e
k−µ
T + 1

+
1

e
k+µ
T + 1

)
k3dk (10)

With Mathematica we can find :∫ ∞

0

(
1

ex−a + 1
− 1

ex+a + 1

)
x2dx =

1

3
a(a2 + π2)∫ ∞

0

(
1

ex−a + 1
+

1

ex+a + 1

)
x3dx =

1

60
(15a4 + 30a2π2 + 7π4)

The Mathematica code is given in figure 2. Using this we have

Figure 2 – Mathematica Code for solving the relevant integrals.

n− n̄ =
gT 3

6π2

(
π2
(µ
T

)
+
(µ
T

)3)
(11)

ρ+ ρ̄ =
7

8
g
π2

15
T 4

(
1 +

30

7π2

(µ
T

)2
+

15

7π4

(µ
T

)4)
(12)

6. In the non-relativistic limit T ≪ m and weakly interacting limit T ≪ m− µ
we can approximate the denominator by

e

√
k2+m2−µ

T ± 1 ≈ e

√
k2+m2−µ

T

So the number density is

n ≈ g

2π2

∫ ∞

0

dk k2e−
√

k2+m2−µ
T (13)

We can see that the integrand is exponentially suppressed and so the main
contribution to the integral comes from small k. Therefore, we can Taylor
expand the square root

√
k2 +m2 ≈ m+ k2

2m
. This gives the number density

n ≈ g

2π2
e−

m−µ
T

∫ ∞

0

dk k2e−
k2

2mT = g

(
mT

2π

) 3
2

e−
m−µ
T (14)
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2. Effective Number of Degrees of Freedom

First of all, we can find immediately

g∗ =
∑
bosons

gi +
7

8

∑
fermions

gi (15)

Let us start to count the degrees of freedom coming from bosons. In the SM we have
3 bosons for weak interactions that are W± and Z. All of them are massive an thus
they give 9 degrees of freedom. Then we have one Higgs with 1 degree of freedom
and the massless photon with 2 degrees of freedom. Furthermore, there are 8 gluons
that are also massless. So they give 16 degrees of freedom. In total we obtain

gbosons = 28 (16)

In the fermion sector we have 3 neutrinos. Since fermions have two degrees of freedom
(spin ±1

2
) they give in total 6 degrees of freedom. For the charged leptons we have

another factor of 2 because there are also anti-particles. So they give 12 degrees of
freedom. Finally, we have the 6 quarks with 3 color charges. Also here we have to
count the anti-particles. This results in 72 degrees of freedom. In total we obtain

gfermions = 90 (17)

Using the formula from above results in

g∗ = 106.75 (18)

3. The Entropy of the Universe

1. For |µi| ≪ T , the fundamental equation of thermodynamics becomes

E = TS − pV ,

therefore

s ≡ S

V
=

ρ+ p

T
. (19)

Using p = ρ/3, with ρ = π2/30g∗T
4, the above gives

s =
4

3

ρ

T
=

4

3

π2

30

(∑
bosons

gi +
7

8

∑
fermions

gi

)
T 3 =

2π2

45
g∗T

3 .

2. If we consider only photons, the degrees of freedom are g∗ = 2. So the total
entropy of the universe is given by

S0 = V0s0 =
4

3
πl30s0 =

16

135
π3l30T

3
0 . (20)

Restoring units we find

S0 =
16

135
π3l30T

3
0

(
kB
ℏc

)3

kB ∼ 1065
J

K
. (21)

4



3. We wish to prove entropy conservation in an expanding Universe, or in other
words

dS

dt
=

d

dt
(sV ) = V

(
ds

dt
+

1

V

dV

dt

)
= 0 .

Since V ∝ R3, the above becomes

dS

dt
∝ R3

(
ds

dt
+ 3Hs

)
,

where we introduced the Hubble parameter H = 1
R

dR
dt
. We now use (19) to

find
dS

dt
∝ R3

(
dρ

dt
+ 3H(ρ+ p) +

dp

dt
− (ρ+ p)

1

T

dT

dt

)
.

We immediately see that the first two terms inside the parenthesis are the
continuity equation, therefore

dS

dt
∝ R3

(
dp

dt
− (ρ+ p)

1

T

dT

dt

)
. (22)

We now differentiate the Euler equation E = TS − pV wrt time

dE

dt
= T

dS

dt
+

dT

dt
S − p

dV

dt
− dp

dt
V .

At the same time, we know that dE
dt

= T dS
dt

− pdV
dt
. Combining these two

equations results into

dp

dt
− S

V

dT

dt
= 0 → dp

dt
− (ρ+ p)

1

T

dT

dt
= 0 , (23)

meaning that indeed
dS

dt
= 0 .

4. Relation between Time and Temperature

1. Due to entropy conservation we know that

S = sV ∝ sR3 = c , c = constant . (24)

Using s = 2π2

45
g∗T

3 we get

T ∝ g
− 1

3
∗ R−1 . (25)

2. In the relativistic case the Friedmann equation for a flat universe is

H2 =
8πG

3
ρr . (26)
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Using

H2 =

(
1

R

dR

dt

)2

=

(
1

T

dT

dt

)2

, and ρr =
π2

30
g∗T

4 ,

the Friedmann equation becomes

dT

T 3
=

√
8πGg∗
90

t ,

which can be readily integrated to give

T ≈ 0.55g−1/4
∗ G−1/4 1√

t
.

Remembering that G−1/2 = MP , we obtain

T ≈ 0.55g−1/4
∗

√
MP

t
.

Rewriting the above as

T ≈ 0.55g−1/4
∗

MP√
MP t

,

and using MP = 1019 GeV = 1043 s−1, results into the desired expression

T ≈ 1.56g
− 1

4
∗

√
1s

t
MeV (27)
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