TMP-TC2: Cosmology

Solutions to Problem Set 3 7 & 9 May 2024

1. Universe evolutions

— Universe composed of radiation and a cosmological constant X > 0

The Friedmann equations in this case read
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We sum the above to obtain a differential equation for R(t)
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It is easy to see that we can write it as
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The general solution is

x(t) = c*sinh (\/% t—l—go()) ,

where ¢ and ¢y depend on the initial conditions. Then, the scale factor is

! A
R(t) = csinh? (2\/; t+ <p0> :

Requiring that R(0) = 0 results into ¢y = 0, so the final result is

! A
R(t) = csinh? <2 3 t) :



— Universe composed of matter and a cosmological constant X > 0

In this case we can immediately work with the second Friedmann equation
that now reads \

.. 1.
RR+-R*=ZR*. 1
To solve it, we make the following ansatz
R(t) = ¢sinh® (Bt) , (2)

with o and 3 constants to be determined by requiring that the above is indeed
a solution of (1). A simple computation gives us

afB? (4 — 3a — 3arcosh(2/t)) + 2\ sinh?(Bt) =0 . (3)
Using the well-known
cosh2z = 2cosh’z —1, and cosh?z —sinh®z =1, (4)
we find that
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Therefore, the final result is
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R(t) = c¢sinh <§ §t>

To find the age of the universe as a function of Hy and €2, we proceed as
follows. First, using the last relation, we compute the Hubble parameter for
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Inverting this expression and using the hint, we get
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Then we have to trade A for €,,. To this end, we use the first Friedmann

equation for t = tg
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H2 ==+ —"—p(t) .
0= 3 + 3 p(to)
Dividing both sides by HZ we find
A
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Therefore,




2. The fate of the universe

1. We start from the first Friedmann equation written using abundances, i.e.
Qmat + Qk + Q)\ =1L

It is clear that the line 2\, = 1 — Q,,.¢ corresponds to a flat universe. Above
this curve, we have k = 1 and below it £k = —1.

We now consider the second Friedmann equation
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that in terms of the abundances becomes

Qmat + R
2 RH?
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The curve 2\ = Qa1/2 describes a universe with zero acceleration. So, we
have an accelerating universe above the curve and a deccelerating one below.

2. In this case, the Friedmann equations simplify considerably and read

R\
R 3
R2+k:§R2.

By solving the first equation, we obtain constraints on the curvature k.
A > 0 : In this case, the solution is given by

w0 s (f32) e (f52)

By inserting this expression in the second equation, we obtain
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This constraint tell us, that for £k = 1, A and B have to be both positive
or negative. Then, an initial singularity is impossible. On the other hand, if

k = —1, A and B have to be of opposite sign, and an initial singularity is
possible for A = —B = /3/(4)\). The solution is

o= o ({52).

A < 0 : In this case, the solution is given by

R(t):Acos< %t) +Bsin< %t)



The second equation gives

kz%(A2+BZ).

Since A < 0, k has to be -1. Then, for A =0, B = 1/3/|\|, we have an initial
singularity. We thus get

R(t):\/%sin< %t)

. If we neglect the cosmological constant, the first Friedmann equation is
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Since the energy of the universe is conserved, pRR? is constant and we use it
to express p as a function of R. It is convenient to introduce a new variable
r> = (R/Ry)® to recase the Friedmann equation as
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Using the definitions of the abundances, we trade € for €2y and €,,.; to find

from the above |
i* = Hj {Q?n(——l)Jrl},
r

Eiin +U(r) = Eior,

or in other words

with 200
Epip =1*, U(r) = ——2"2,

r

and
Etot - Hg (]_ - Q?n) .

The potential U(r) is monotonic, negative and U(r) — 0, when r — oo.
Then, we first deduce, that for all possible values of FE,,, there is an initial
singularity. Secondly, depending on the sign of E;,, we have infinite expan-
sion or a collapse in the future. For E;,; > 0 i.e. Q?n < 1, we have infinite
expansion. Otherwise, the universe eventually collapses in the future.

. We proceed exactly as before. We write the first Friedmann equation as
Ekin + U(?") = 0,

with 72 .
Ul(r) :_70 [Q?n <——1) + 8 (r*—1)+1].
T



We will study this potential in the cases where €2, < 0 and €2, > 0 separately.
Q) < 0 : First, note that

limU(r)=0, lim U(r) = occ.
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Computing the derivative of the potential
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U'(r) = 5

we notice that it is a monotonic function. Then, there is an initial singularity
and the universe grows until 7, (for which U(r,) = 0), then it collapses.

2, > 0 : In this case,

limU(r) = —oco, lim U(r) = —o0,
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meaning that the potential has a maximum :
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Then
Hi [ 3 0 2/3/(y0\1/3 0 0
Umam - U(Tmaz> - _7 W(Qm) (Q)\) + (1 - Qm - QA) :

The solutions of the equation U,,,, = 0 are given by
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with
D:an—Qf’n—l— Q4 —2Q0 .

The real and imaginary parts of the three solutions are plotted in the following
two graphs :
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From these graphs we observe the following : 2y (blue curve) is real and
positive for all values of €,,, so this solution is physical. {22 (red curve) is
complex for 2, < 0.5 and becomes real and negative for §2,, > 0.5, so it is an
unphysical solution. Finally, 2, 5 (yellow curve) is complex for €2, < 0.5, it
is real and negative for 0.5 < €2,,, < 1, and it is real and positive for 2, > 1,
meaning that it is physical from 2, > 1.

Above the first curve (€2 1), we have U > 0 and 7,4, < 1 = 19(today),
then there is no initial singularity and the universe expands forever.
Between the two solutions, we have U,,.. < 0, then there is an initial singu-
larity and the universe expands forever.

Finally, under the second curve (€2, 3), we have U0 > 0 and e, > 1 =
ro(today), then there is an initial singularity and the universe will collapse in
the future.

Remark : Experimentally, it has been measured :

Q,, = 0.24 £0.04,
2, =0.76 £ 0.06,
Qiotar = 1.003 £ 0.017.

The universe has an initial singularity, it will expand forever and is acce-
lerating. It is not known, whether the universe is closed or open, {2, =
—0.003 £ 0.017.

3. Recollapsing Universe

1. The first Friedmann equation can be rewritten as
R? R, 1
BB R (6)
R R R



with

Ry, =——pR*.
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For a recollapsing universe, there is a time when the expansion stops, i.e.
R = 0. Then

Rn.=R. (7)

. From the Friedmann equation (6), we find

Ry,
R=+\/— -1 8
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Integrating this equation with positive sign leads to

t:—R\/%—l—Rmarctan(\/R—én—1)+ng (10)

where we used that R(0) = 0 to determine the integration constant. The
universe reaches its maximal size for R = R,,, which corresponds to t,, =
5 R After this point we must continue the solution by taking the negative
sign in (10). Therefore, the total lifetime is

thfe = 7TRm (11)

. The Friedmann equations in that case read
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Combining the above we find

R R
2t =N (12)

R(t) = Ry, sin} (V 3|A|t> (13)
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with solution

The maximal expansion is reached for sin(...) = 1, translating into t¢,, =

—Z . The lifetime of the universe is
\/3IA]

2T
tiife = 14
Ji S (14)
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