TMP-TC2: Cosmology

Solutions to Problem Set 1 23 & 25 April 2024

1. Covariant Derivative
1) Applying the coordinate transformation on the derivative and the vector gives
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We can see that through the second term the derivative of a vector does not trans-

form like a tensor. This leads to the fact that d,V# = 0 is not coordinate inde-
pendent.

«

2) Remember that the Christoffel symbols transform as
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By using the product rule, the second term can be rewritten to
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Now we have everything what we need to calculate the transformation of the cova-
riant derivative of a vector :
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Applying %% = 0%, the second and the last terms cancel. At the end we obtain
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We can observe that the covariant derivative of a vector transforms as a tensor.
Therefore the expression V,V# = 0 is coordinate independent.
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As an example that will be relevant for us, you can take the energy-momentum tensor
T . We will use the fact that V,T"” = 0 does not depend on the coordinate system.

3) Recall that V¥ = 0,V" + T} V*and V,,, = 9,V, — '}, V. Then the idea is to
consider expressions of the type (A*B"),5 to deduce the expression for T" ”; 5
We have

(A¥BY).s = A%B” + B;’:;A“
= 0;A*BY + 0; B AY + FSLQA“B” + 15, B A"
= 05(A*BY) + FgaAO‘B” + Iy, B A"
From which we deduce

T 5= 05T + T T 4 Ty, TH

Similarly, we obtain

T;W;(S = 86Tw/ - F?MTOH/ - F?VTMO‘
Tlul/;é = 85T‘f, + F/goaTOlt/ - ?VT#a

2. Metric for a 3-sphere and a 4-dimensional hyperboloid

1) Take the derivative of the given constraint
rdx 4+ ydy + zdz + wdw =0 (4)

and use this to eliminate w in the metric :

(rdx + ydy + 2dz)?
122 —y2— 22

ds* = da® + dy* + dz* +

2) First, let us calculate the differentials
dx = cos x cos ¢ sin #dx — sin y sin ¢ sin #d¢ + sin x cos ¢ cos #df
dy = cos x sin ¢ sin Ody + sin y cos ¢ sin fd¢ + sin x sin ¢ cos 6df
dz = cos y cos Ody — sin x sin 6d6d
Inserting this into the first part of the metric gives
da? + dy?® + d2?
= (0052 x cos? ¢ sin? @ + cos? x sin’ ¢ sin? 6 + cos? y cos? 6’) dy?
(sim2 x cos? ¢ cos? @ + sin? x sin” ¢ cos? 6 + sin? y sin? 9) de?

+
+ (sim2 y sin? ¢ sin? @ + sin? y cos? ¢ sin® 9) dg?



Note that all the off-diagonal terms cancelled. We can simplify this further :

da? + dy? + dz? = cos® ydx? + sin? xd#? + sin? y sin? fd ¢
Furthermore, we can calculate
xdx + ydy + zdz = sin y cos xdyx
and
1 —a? —y? — 2% = cos® x.
Therefore, the metric becomes

ds® = dy? +sin® x (d@2 + sin? 0dgz52)

3) In that case the metric becomes

ds® = dy? + sinh® x (d6” + sin® 6d¢?) .

(10)

The calculation works in the same way as in part 1) and part 2). Note that we used

the identity cosh? —sinh? = 1.

3. Friedmann—Lemaitre-Robertson—Walker (FLRW) metric

ek=0
First we consider the flat space case, with the line element given by

ds® = —(da®)” + a*(2°) Y (da')?
i
where for later convenience we introduced the shorthand notation

> (dx')? = [(da')? + (da®)* + (dz®)?] .

1) The metric is
G = diag[ —1,d%, d?, CLQ} ,

SO
g = diag[ —1,a% a2 a_Q} .

2) The action for a classical particle with mass m is

S:m/ds:m/dpngt“jc”:/dpF(x,:t),
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where a dot denotes differentiation with respect to the affine parameter p. By intro-
ducing the explicit form of the metric we find

F(z,4) =m| — (a°)? + aQZ(j:i)Q] . (15)

Using the Euler-Lagrange equations

d OF O0F
— =, (16)
dp 0+ Oxt
we find 4
i = —aa’Z(.i:Z)2 ,  foru=0,
| di‘ (17)
7= —2—3%" for p=1,2,3,
a
where a prime denotes derivative with respect to 2°.
3) The Christoffel symbols are defined as
e L (18)
By identification, the non-zero I's are
!/
a

The Fkij, 1,7,k = 1,2,3 are zero, because the spatial part of the metric is flat. Let
us check the above results with the usual formula

1
F’\W = 59”CA (0uGus + OvGur — OxGuv) - (20)
For I, we find
) 1 .
My = §9m (Dogix + Digos — Oxgoi) (21)
1 ..
= 59”80% (22)
1, a
= —a %’ = — 23
Qa (1% a ) ( )
and for T,
1
% = 5905 (0igin + 0iGin — O gii) (24)
1
= —Egooﬁogn- (25)
1
= —580(12 = aa' . (26)
4) Since R¥, . is antisymmetric in the last two indices, the only combinations we

have to calculate are



Results
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Then

R%; = 0oLy — I = aa”, (27)

and o

Ry = P szij = (a,)Q . (28)

5) The components of the Ricci tensor are

"
Roo = Ry, = 3% and Ry = R, = ad" +2(d')* . (29)
a
6) Using the above, we see that the scalar curvature is
a’ a 2
—+ (—) ] . (30)
a a

7) Finally, the non zero components of the Einstein tensor

R=¢"R,, =6

1
Guu = R;u/ - _guuR 5 (31)

2
a . a 2 B a 2
a a N a ’

() ] @R ()

a a

are
"

Goo = —3— +3
a

—~

32)

Gii = ad” + 2(a’)? — 3a*

We extracted all the information contained in the metric. The tensor G contains
the geometric part of the Einstein equation G, = 87GT,, + Ag,,, where T" is the
energy momentum tensor and A is the cosmological constant.

ek#£0
Now we move to the curved space,

2

7 —Tkr2 + r2df* + r*sin® Od¢? | . (34)

ds® = —dt* + a*(t)

5



1) The metric is

2
a
G = dlag |:—1, 1——]{,‘7"2’ CL2T'2’ a,27“2 SiHZ 0

SO
1—kr?2 1 1

? Y .
az 7 a?r?’ a?r?sin®4 |

g = diag {—1,

2)The Lagrangian is given by

2

a
1 —kr?

ﬂaﬂzm(4h—

Thus, the equations of motion are

22
].f. - _ad (1 _Tklra + 7"2(92 + 7,2 sin2 9¢2)
. : rr2
Po= r(l— k) |67 + sin? 00 —
: /
6 = sinfcosfo* — 2l —2%ip
r a
$ = —2-¢—2"2"0¢ — 2%
r sin 6 a
3) The non zero Christoffel symbols are
aa’
r‘r.= ——
" 1 — kr?
I,y = adr?
I',, = ad'r’sin®0
' a/
r rt — E
kr
rho = ——
M 1 — kr?
My = —r (1 — k:rQ) sin® §
CLI
Feet = o
]'_‘007' — 7’_1
F9¢¢ = —sinfcosf
/
@ . a
I = o
F¢¢r = !
cos 0
I, =
ad sin 6

6

i+ a*r20% + a?r? sin? 0(152) .

— 2%

(37)



4) To calculate the non-zero components of the Riemann tensor, it is very useful to
remind some of its properties. The Riemann tensor is antisymmetric in the last two
indices, so R, = 0V p,v. We can also show that R = = 0V p,o, since Ry,
is antisymmetric in the first two indices. Also, the Christoffel symbols have always
a repeated index, and as a consequence R, = 0, if the four indices are different.
Taking the above considerations into account, we easily see that the only non-zero
combinations are

R‘ullud = _Ruucr,u and R“VVO‘ = _Rul/cru : (38)
Look at the first case with v # . Since I'*,, only depends of v, we deduce that
R', » = 0. This means that necessarily v = 0. We use the same procedure in the

second case. The non-zero components of the Riemann tensor are

"

B -
R
Ry, = r’ad”
R'y, = r’sin’®faad”
. a//
Ry, = ——
a

a
Ratet R
k+ (a')?
¢ —
Roor = 1 — kr?

Ry, = rsin*f (k+ (d)?)

a
Rd)td)t R
k+ (a')?
¢ _
By = 1 — kr?

Rd)%e = r? (k‘+(a’)2)

5) The Ricci tensor components are

"
Ry = —3%
a
aa” + 2k + 2(a’)?
1 — kr?
Rog = 1?(aa” + 2k +2(d)?)
Rys = r*sin®0 (ad” + 2k + 2(d)?)




6) The scalar curvature is

R=¢"R,, =6 (39)

a” d\° ok
a a a

Remark that the spatial curvature modifies the space-time curvature by introducing
the last term.

7) The Einstein tensor components are

2
Nk
Gu = 3[(3> + =
a a

2aa” + (a')* + k

G = 1— kr?
Gog = —1*(2ad" + (d')* + k)
Gps = —r’sin®6 (2aa” + (a)* + k)

4. Volume in curved spacetime

The volume is given by

V:/d?’xﬁ,

with .
T2 U 0 4.2
T _ rsin"d
0 0 r2sin?6 1 —r2/R?

Therefore, we have
R ™ 27 2 .
r°sinf
VzQ/dr/d@/ dp————
0 0 0 V1 —1r2/R?
R 2
= 87 Adr——
) /2
= 87rR3/ dy sin? y = 2m2R3 .
0

The appearance of the factor 2 in the above calculation is because we have to account
twice for the interval of R (r increases from 0 to 1, then it decreases from 1 to 0).



