TMP-TC2: Cosmology

Solutions to Problem Set 11 2 & 4 July 2024

1 Flatness Problem

Using the given equation 2 — 1 = ﬁ we can find for an arbitrary time ¢ :
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With R(t) o t" (n = 4 for radiation domination and n = 2 for matter domination)
we get
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Inserting the time of recombination tz ~ 3.7 - 10° years, we obtain
|Q(tr) — 1] ~ O(107® — 1077) (3)

It seems that this number is very fine-tuned and surprisingly close to the value zero
corresponding to a flat universe. But why ? This is the flatness problem.

2 Horizon Problem

Let us assume that at one point in the past, a signal was emitted. Then the proper
distance between the observer and the source is given at time ¢y by
to 1
d(tg) = R(t ——dt 4
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If t. is the time of the emission of the CMB and ¢, is the age of the universe today,
then d describes the distance between us and the CMB.
The size of the causally connected region at t. is

Di(ts) = R(to) / e ﬁdt (5)



Then the angle that contains one causally connected region in the sky is

6 — 2 arctan (%3 ((f;))) (6)

For a matter dominated universe we have R(t) oc ¢3. Therefore, we obtain for D
and d

Di(to) = 313t (7)
d(to) = 3tg (tg —té) (8)
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With 14 z = £lo) — (t") ® we obtain for the angle
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With z ~ 1500, we get the angle 6 ~ 1.52°.

The problem with this small angle is that in the CMB are many causally disconnec-

ted patches. However, the CMB is very isotropic. How can this be ? One solution to
this is for example inflation. We will discuss this on the next sheet.

3. Equations of motion for a homogeneous scalar field in
FLRW

We have a theory described by the following action
S =5,+ S[¢] ,

where the gravitational part S, is the usual Einstein-Hilbert action
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and the inflaton’s part is
4 4 1 v
(6l = [ doy=g 2ol = [ dev=g |50 0,006 - V(o
The variation of the action with respect to ¢ yields
5,506 = / di1y/=g (—g"™ 0,060,006 — V'(6)0¢)
= [ [0, (v=a90,0) — V=3V (0)] .
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so the equation of motion for the field is
1
V9

We now introduce to the above the explicit form of the (spatially flat) FLRW metric

0y [V=39" 0] - V'(6) = 0.

ds® = —dt* + a(t)*(dz® + dy* + dz*) —  gu = diag[—1,a(t)* a(t)? a(t)?],

and use g = —a(t)®, therefore
1 / 1 i1 /
a(t)gau [a(t)’g"0,0] —=V'(¢) =0 — Wao [a(t)? g™ 0] + 9" 0,00 —V'(¢) = 0.

If we take into account that the inflaton is homogeneous, the spatial derivatives can
be neglected so the above gives us

b+3Hp+V'(¢) =0,

where H = a/a is the Hubble parameter.

The second equation comes from the variation of the action with respect to the
metric. We have seen that the variation of the Einstein-Hilbert action S, with respect
to the metric yields the Einstein tensor G, = R,,, — 1/2g,, R. The variation of the
action for the scalar field S[¢] with respect to the metric is

69595 = /d4[L' (_%\/__ggw/ *C[Qb] - %\/—_gé?uqbaygb) 5g/w .

Identifying the energy-momentum tensor with

2 sl
V=g ogm

T =

we get
T;w = u¢au¢ + guuc{(b] :
Putting everything together we get Einstein’s equation

G, = 8rGT,, .

The above for the 00 component in the FLRW space (look also at the Problem Set
1) is

GOO = 87TGT00 — 3H2 = 881G (%¢2 + V(¢)) s
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where we neglected again the spatial variations of ¢.

4. Scalar field in FLRW spacetime
1. We have seen that the energy momentum tensor 7}, of a scalar field ¢ reads

1
T;w = qua,,qb — Guv |:§ (8:%@5)2 - V(¢):|
where V' (¢) is the potential.

The energy density of the field corresponds to
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where dot denotes derivative with respect to time and a is the scale factor.
The pressure p is related to the spatial components of the energy-momentum
tensor as -
| 1 2
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Using the above, we see that the equation of state parameter is
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2. Accelerated expansion requires

p
<__
P==3

For the scalar field, the above condition gives us

¢* < V(9)

which means that the potential energy of the field must dominate over its
kinetic energy.



3. If we assume that the field is homogeneous, i.e. ¢ = ¢(t), the expressions for
p and p we found before simplify significantly
¢’ ¢

P=§+V(¢) and ng—v(@

Using the continuity equation
p+3H(p+p)=0

we immediately find

. . dV
3Hp+ —=0
¢+3Ho+ o
which is the Klein-Gordon equation of a (homogeneous) scalar field in a flat
FLRW universe.



