Tangent space methods II

TS-1I.1

We consider time evolution using 'time-dependent variational principle' (TDVP)

1. 1-site TDVP [Haegeman2016, App. B]
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Right side of (4) requires tangent space projector. Consider its form (TS-1.5.25):
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The three terms with £ = f L =2, ¢ =4+ , appliedto H VB (4)7 ), yield

matching structure of (7). Thus, P"“ , applied to # [ *{/(*)) , Yields terms of precisely the right structure!

To integrate projected Schrédinger eq. (4), we write tangent space projector in the form (TS-1.5.26):
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Right side is sum of terms, each spegifying an update of one ‘lf': or ZF}_’ on the left. Eq. (4) can

be integrated one site at a time, by defining the updates through the following local Schrédinger equations:
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backward(!) time step

“ 08 < b
In practice, e"’ Hn t Ct and e "Ht E A g are computed by using Krylov methods.

(s
Build a Krylov space by applying H‘z multiple times to Cp_ , set up the tridiagonal representation [HQ]k

r¢lov
of H}" in this basis, then compute the matrix exponential in this basis, and apply result to € . 3
Likewise for HL and Ag.
To successively update entire chains, alternate between site- and bond-canonical form,
propagating forward or backward in time with H lzs or Hf , respectively:
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The scheme described above involves 'one-site updates'. This has the (major!) drawback (as in one-site
DMRG), that it is not possible to dynamically explore different symmetry sectors. To overcome this

drawback, a 'two-site update' version of tangent space methods can be set up [Haegemann2016, App. C].

A systematic comparison of various MPS-based time evolution schemes has been performed in
[Paeckel2019]. Conclusion: 2-site-update tangent space scheme is most accurate!

A scheme for doing 1-site TDVP while nevertheless expanding bonds, called 'controlled bond expansion (CBE),

was proposed in [Li2022] (see next lecture!).

Page 4



(A3
2. 2-site projectors P

TS-11.2

The construction of tangent space W'sand its projector P“ can be generalized to n sites [Gleis2022a].

We focus on W = z (but general case is analogous). Define space of 2-site variations:

\y = span of all states \l}') differing from \1];) on precisely 2 neighboring sites

2. sites
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o 5, . .
Global 2s projector 25 such that N S jua (? = ) , can be found with a Gram-Schmidt

A
scheme analogous to our construction of P(s , see [Gleis2022a]:

compare (TS-1.5.22)
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All summands are mutually orthogonal, ensuring that (P zs) = et* , and that ¥ Pl( = 2,5

(6

Alternative expression:
compare (TS-1.5.26)
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This projector is used for 2-site TDVP (see TS-11.3)

Orthogonal n-site projectors

For any given MPS |ﬁ(ﬂl), full Hilbert space of chain can be decomposed into mutually orthogonal subspaces:
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(TS-1.3.28)
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3. 2-site TDVP  (optional) TS-11.3

[Haegeman2016, Sec. V & App. C]

2-site tangent space methods are analogous to 1-site methods, but use a 2-site projector. There is a
conceptual difference, though: the main reason for using 2-site schemes is that they allow sectors with

new quantum numbers to be introduced if the action of H requires this. However, states with different
ranges of quantum numbers live in different manifolds, hence this procedure 'cannot easily be captured in a
smooth evolution described using a differential equation. However, like most numerical integration schemes,
the aforementioned algorithm is intrinsically discrete by choosing a time step, and it poses no problem to
formulate an analogous two-site algorithm'. [Haegeman2016, Sec. V]. In other words: the tangent space
approach is conceptually not as clean for the 2-site as for the 1-site scheme.

Schrédinger equation, projected onto 2-site tangent space, now takes the form
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Right side is sum of terms, each specifying an update of one 4, or '4': on the left. Eg. (4) can

be integrated one site at a time, by defining the updates through the following local Schrddinger equations:
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Right side is sum of terms, each linear in a factor appearing on the left. Can be integrated one site at a time:
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Their contribution can be integrated exactly: replace 1{’2‘({) by 1"!. (t+1)= ¢ LMt q’ H

forward time step
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In 1-site-canonical form, site /I involves two terms linear in 'Lﬂsﬂ: t 'l}';fr (t) = - Hc.“ t}«(':l ) @
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Their contribution can be integrated exactly: replace % ’ .h(%) by 1(/ o - 1)= e y 2*‘—5 ‘h,,, (i3)

Page 8



(s )
Their contribution can be integrated exactly: replace % M(f) by 1(/1“ t-1)= ¢ ¢ 2*“5 SLH, i3)

backward(!) time step

To successively update entire chains, alternate between 2-site- and 1-site-canonical form,

¢
propagating forward or backward in time with H g or (’ffaS , respectively (analogously to 1-site scheme).

A systematic comparison of various MPS-based time evolution schemes has been performed in
[Paeckel2019]. Conclusion: 2-site-update tangent space scheme is most accurate!

Page 9



4. Energy variance [Hubig2018] TS-11.4

When doing MPS computations involving SVD truncations of virtual bonds, j
the results should be computed for several values of the bond dimension, D ,

to check convergence as D — © . Often it is also necessary to extrapolate the
resultsto D = @ , e.g. by plotting results versus /1)  or some power thereof.

!

/D
However, for some computational schemes, it is not a priori clear how the observable of interest scales
with D , nor how it should be extrapolated to D=w an example is ground state energy when computed
using 1-site DMRG with subspace expansion [Hubig2015], because it does not rely on SVD truncation of bonds.

Thus, it is of interest to have a reliable error measure without requiring costly 2-site DMRG. A convenient
scheme was proposed in [Hubig2018], based on a smart way to approximate the full energy variance,

2_ a 7— E
Ag:= “ (H-E )1(," S <1(»[(|—| - E) [4Y (= zero for an exact eigenstate) (1)
A a
L .
= (ylH"1y> - E?; with E = {§JH %) () &E;“tt
Then extrapolations can be done by computing quantity of interested for several D, © AE
but plotting the results via /A, and extrapolating to Oz — ©
exacf
If quantity of interest is energy, then extrapolation is linear, E g (a E) = Eﬁ + Qa-Ag ()

Computing <1H i:‘[ lf l}) directly is costly for large systems with long-ranged interactions,
such as 2D systems treated by DMRG snakes. Also, computing A¢  as the difference
between two potentially large numbers is prone to inaccuracies. [Hubig2018] found

a computation scheme in which the subtraction of such large numbers is avoided a priori.

Key idea: use projectors PY- onto mutually orthogonal, irreducible spaces ‘\) nE

L
£ W
Recall (2.11): _[[\] = j[f = Z ’[3""‘- P"‘L PV\(_L - Su PM' -
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Insert completeness into (@) a W L -
definition of variance: Ag = yl(u-¢€) Z‘;f (G-ety = 2. ag (3
w=o

Now two crucial simplifications occur:
oL & “ -

A = Lel(H-eNI(G-cY) 1g) = (E-eME-€) =
g PG~ £Y) 1) Y€ - E) o @
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(2] A
B = Lyl(H-ENOyI(i-EY) 1) = (E-EME-8) = o
—

(g,) po+ largest contribution to variance cancels by construction!
n=e (s,6)
a wl A - ),
av = Lel(H-€NF (d-ey) 1y = Ll P™HIyY | since POy 2
= PuL PUL (rsar2.11)
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In practice, approximate A by the first two nonzero terms:
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(11) is exact if longest-range terms in [ are nearest-neighbor, because then P("‘%)—Lﬂ ll}) =0
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(e3)
Explicit computations:
(TS-11.2.16) z 2 K
=1 fL
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L=1 !
£
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& ‘ :
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We would like to avoid computing Al explicitly, because of its large image dimension.
d
So rewrite, using isometry condition for discarded sector: Q: = C (9
and completeness of kept together with discarded isometries: :43 = = s - %‘ (3

n
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