Tangent space methods 1 TS-1.1

1. Motivation: why is tangent space useful?

tangent space
of MPS having one /\
> updated tensor
Tangent space: spanned by vectors /
tangent to curves running within a

smooth geometric structure. M

Higtmo)

P'S A\ (meny

\v full Hilbert space
of dimension d

~

space of MPS with
MPs specified dimensions

Basic idea [Haegeman2011]:

Consider Schrodinger equation: 2 % |’§ ) = HDY 0

If a small change in an MPS \1:1:‘7 is to be computed during

time-evolution with a small time step, this change lives in the 'tangent space' of the manifold defined by
the MPS, spanned by all states obtained ,Igy 'one-site (1s) variations of RV , i.e. by changing on[y

one tensor. Thus construct a projector P‘5 onto this space, and do time evolution using 1?’ S H .

P 41Ty & SLTREIEN (2)

Basic insight: 'If you need to do a projection, do that at the outset, and then work |
in the projected space, without further approximations!' '

This is a very fundamental and general idea. It is applicable to Hamiltonians with hopping T TET
or interactions of arbitrary range(!) (which is important for applications to 2D systems,
treated via 1D snake paths). It has been elaborated in a series of publications:

[Haegeman2013] Detailed exposition of (improved version of) algorithm.

[Haegeman2014a] Mathematical foundations of tangent space approach in language of diff. geometry.
(For a gentle introduction to diff. geometry, see Altland & von Delft, chapters V4, V5.)

[Lubich2015a] Concrete, explicit formula for tangent space projector. < Breakthrough result!

[Haegeman2016] Unifying time evolution and optimization within tangent space approach.
[Zauner-Stauber2018] Variational ground state optimization for uniform MPS (for infinite systems).

[Vanderstraeten2019] Review-style lecture notes on tangent space methods for uniform MPS.

[Gleis2022a], [Gleis2022], [Li2022] Research performed in the von Delft group.

This lecture follows [Gleis2022a] for construction of tangent space projector, and [Haegeman2016],
for discussion of time evolution using the time-dependent variational principle (TDVP).
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2. MPS canonical forms

TS-1.2
Consider i-site MPS with open boundary conditions: 1‘1 “
L '1;(
- 6 6 6.
My = g MMt Mg + PR IENES ()
1 L rd ‘ff
where M % is matrix with elements *6¢ of dimension D D with Dy =D, =
! 2 F ' - ¥ ve ° 2
shorthand: M = (Hl S, M&) € M space of tensors with specified dimensions
Gauge freedom: l’qu'D is unchanged under 'gauge transformation' on bond indices:
~ Cand Y -
W My s U My - 114, $ » ﬁ_“ f_’— i 61"' & ﬂii
b T 1 [ [ I ®
M e f - Myt = ®
1 = g (e Sz ‘ io - &t = 4

with 6 ) € SL ( 'Dgl C) group of general complex linear transformation in :Dl dimensions

space of MPS with

space of

tensors ﬁPS specified dimensions

of specified

dimensions lq'L'ﬂ b full Hilbert space
of dimension d‘*

‘orbit' of tensors |
specifying same state of I l}'fq 1
due to gauge freedom

Mﬂ?s is a differential manifold, since it depends smoothly on the tensors in M)

[Haegeman2014a] discusses this aspect in detail. In our discussion, though, it plays no role.

Gauge freedom can be exploited to bring MPS into site- or bond-canonical form:

Bond-canonical:

A, A A\ %w
\1[»["\]) = vy 1 ?IAC; 7 S"- = \‘BL> ‘ﬁ& >ﬂ+| N)ﬁl“?

Se e
b
\WxK>£ @SK‘ >z+: Yy = A9
with AL AT - ﬂ_K) C]__: = { , AS A = dingond v A (s

¥ K I)
56‘&6 _ﬂ_ ) = 3 , 3+‘ &6 = A(‘k&mﬁl \‘f BL (6)

requiring this fixes gauge uniquely

(6)

1

{' ‘I’uZ 1;, %) @Q I.g form orthonormal bases for 'kept' (K) subspaces representing left- and right parts
of chain.
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1-site-canonical:
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2-site-canonical:

A C & B e
bttty = ‘i_‘t—‘r"?"‘(’_r*‘ 129, Mu%)@p;[%“) Re

— S

=K
\w,,}k : ($ >z+z.
_ _ . s _ _ _
Relation between 1-site- and bond-canonical: 1{1 A ¢ \p /\ 2 '3 ¢ (o)
. i e i s ¢ _
Relation between 1-site- and 2-site-canonical: \.‘/c = Ae th = C, Bl“ (1)

Matrix elements of Hamiltonian, represented as MPO:

o A
bond (b): <@;Ké§]ﬁl'¥fﬂ§;> _ _E‘ﬂ =: E%H: 3)

1-site (1s):
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2-site (2s): ) L 6, G
& 1l [BTAIE g B = P %
¢ o “l Jl,
(15)
Related by: Ae Bes ’
) l (
e B30 (94 -
¢! ..
ql-l B
| b 2b
30 Bede- e
HI" E&M



3. Kept and discarded spaces TS-1.3

A, A Ay N By B B2
“ - \ 24 e+

) TDWDIDo«gaD(DrDY_“
for simplicity: assume all virtual . ‘e Fer »
bonds h di ion, D

0oNnas nave same dimension \WKK)Q [®F>£_H
Definition of kept spaces:
left 'kept' (K) space of site [ - VK = 5 % \ fl;)K ) z c v ®\ )
< Q = fau\ T |QD-.. 2

right 'kept' (K) space of site { : W;H = $@a.\ ‘l ‘@?ﬁzﬂ lal \V.?,H@ ®\Iz (»

Action of isometries: generates new kept spaces:

o 4
W ey =Ny Rl 1 (A, - L33 ]

L g // 6
'left parent (P) space' o
t | tri
Dimensions: Dd — D |:| E—::.:;fiar il open triangles: 'kept'
K Y BM‘ (7]
B, \Q@Wf W, [B,LH] i 16, I 7 1B >z er & ¢
N L+ Z " Gou
'right parent (P) space' :l
D x(d-D)
Dimensions: ¢ - D -
(2.5) (2 (2., %)
. - + . K - K 4 : .
Isometric conditions, AQ All = jﬂ,z ‘ B e B ¢ 1 " ensure orthonormality of kept basis states.
1 |:| = , [ |:| =0 (9

The image spaces of Ag and % 4, T smaller than their parent spaces.

f— —

Let { and B be their complements, mapping onto 'discarded' (D) spaces orthogonal to kept ones:

[ L
WK s \/'b | [ A‘ o(é, ‘ . E,z
-(® Vo‘ L 19 > ) .\ ?u')L o 1 ol ¢ (©)
'left parent space' Z / 6
Dimensions: D.d — D - D = filled triangles: 'discarded'
(D-d)x (D-d - D) -
Bg+\
= K D = S, _ D .
By : V @Wa+ W, [BM | X D6 = 1B, frE W
\_,J-\,_L.J Ger
'right parent space’ Z
Dimensions: 4. D — d.D -1 =15 (8

(-D - D)x(d-D)



Dimensions: 4.V — d.D -0 =D

Lo ooy

By definition, )4'z= Q? ® E(_ and 3.1_ = Bu.@ Eu( are unitary maps on their parent spaces:
(1)
| ]
(’D-A)t (D 'd) (O"DBK(O(D)
JI.P
vy b\ VL (e R [ 100 L g
A R LA e e S R
AQ_ ,: nz ﬂ& ﬂﬂ. RL 0 : ﬂ!
'orthogonality:
K =~ -+ R { -
afa =4% AR -4, @#4 =0  KF-o ©
—)—
-, -, dT--, T-ow
(- & - H , . 2]
|:| l \ l |:| (€3)
'When K meets K, or D meets D, they yield unity; when K meets D or D meets K, they yield zero.' G

NOEREEENGE

f : 4 K,
Unitarity implies: Aﬁ Az S - e L .:@'t—:—---—. = 1[? = 'jl_: ®1 )
b A Al { 4D f o
' ¢ : ﬂz
+ « =t
'completeness': ﬂl ﬂe + 2 A P) = ']l.:'(g'ﬂ. i (16
;15 ¢ %JD = §>+ (1)
L1 + =
|:| \ (9
{ P + P K
Similarly: 52“ 524_’ 11"! and 31,‘, &g,, = ix = ﬁfx@iu' imply:  (ia)
'orthogonality':
} ¢ % 5 _ _t
Bf“ Bl«-( y 1(, / Beu 6¢4| = jz p B!.Be.“ - D/ 3, Bg =0, G

Ry



'When K meets K, or D meets D, they yield unity; when K meets D or D meets K, they yield zero.'

¥

4 - K
'completeness': Blﬁ'&U‘ + Ba_«BQ,, = jlo(® iew , (2)

ri;‘_t + = & ey . (23)

The completeness relations imply several identities that will be useful later:

1s projector can be expressed through bond projectors in two ways:

(G t3)
vl 2 spa Hpa F osor s g W
2s projector can be expressed through four bond projectors:

she (o bl - ]
R

DD projector can be expressed through 2s, 1s and bond projectors that only involve K sectors:

fj):#jmlzﬁ’w{g} ) ;JPl [¥¢ ) c#l o
- shhe - slcks - shle o bkt w
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4. Kept and discarded projectors TS-1.4

Structure of spaces explored by bond-, 1s or 2s schemes can be elucidated by introducing local projectors:

Left K projector (cf. MPS-II.1): le iD,.f] Right K projector: le [‘. ﬂ*‘l
K k| _ K K)o
SIPST - B A B @ - g
A . (sum over & implied) £ Ay (sum over IS implied) L o)
o=\ @ :
SN
Left D projector (cf. MPS-II.1): Le To,fl Right D projector: Le t‘. -(*‘1 @
A
b 1O AD ) - X
D = 1B < e & BB - ow
(sum over « implied) £ Ap  (sumover fs implied) £
?o"‘ o @1“ = 0
A A X'i A A A= x‘ a
Projector properties: ;( ng =& ?tx , &’; &; - &I (xe il‘-"0 ()

K K *-A—A—JD
For example: PQPIL = 'E (E_:;) = ,_i"‘;fl;j\) S 'PBK (s)
i T

2
[/ |/
A T17T ¢ 2 @
£ [/

A b A K A
Bond projector: ’(%_ PQ ® @:ﬂ ,_;"J#;j\) C%EY\:? (#)
e lof ] J Ly
1S AR "
1s projector: % = Paf@ 12® Q.. v—’_é‘:ée \ C%r:ﬁi @)
I I {1 .

Le[r, 2]
n sites n S|tes
29S8 Ak —.—
ns projector: e =1, 9 12® ®]]'t+u-®& V_;{’J;f‘) \ ‘ C#ﬁ (4
Le[',ﬁs,l-vt] I B Tl O] Lin
A X3 A X2 A i) A
. b 1s 718
Projector property: (?t ) = f, , ( 5 ?, (?2"5) = ?:‘S (1o
follows from (2)
~1s 208
The projectors P P' Pc., mutually commute (since they are all diagonal in same basis 157 )

However, they are not mutually orthogonal (see below).
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Hamiltonian matrix elements can be obtained from full Hamiltonian via local projectors,

b 5h "L 1S s A s 5 "ws
o= ﬁ b o= h o R ji fy ()
For example: A4 | N N N
S A 2s : _ = ()
prad e | peodeg W'

X K D C "
t 4
"\

§o T I T 18

Projectors for K and D sectors

541:%\\%:?’ Pei 55513\\?:,‘%*

It

(13)
DD
e A g
L 3 ! 3

These fulfill numerous orthogonality relations; e.g.

Xe fk,p}
Same-site-indices - orthogonal: " "
PXK pYx S““' 83??’ 5 g R

=T - .g.

1 ¢ £ “-qﬁ-z — r x

2

D on earliest or latest site - yields zero: (re)

DX XX _ ) ¢‘ e
1)“? Pt'f' = O jf pPeyg X

XX PX"D - 0 - - \ %
?‘ci tlzl if e (4 f E

two D's on same side but different sites - yield zero:

- - e A
P B~ e : :
] "Tl x (Ib)
XD oXD - x':‘lé_ﬁj o ;
?LI leil ~ S“ L2 i

a0’

Bond, 1s and ns projectors are all KK projectors:

0s b KK _
l}u = R - ‘P!?,l-n ‘AI : :!lz E' ; :5 (%)
f
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6 5b KK "
Pl{-l = R - ?M-H fl ; :lil CE?FFT )
B pk - ::f{;flz \ c';:;:r*?ﬁ (13
g L

1-'. f-H

pus _ ke - ::;%3 \ \ CV‘:}; 19

e = %y
A v 2 Lu L

W s projectors are not orthogonal. E.g.
(20}

W s projector is annihilated by left D on its left or right D on its right:

?LDI)? vns o if peg' AL LAy,
’ e.g. ) \\ I-x @)
P PXD - 5 i fem gy .
{ L T} Len

~1)s projectors, in two different ways: E.g.

u
o

Any s projector can be expressed through two (W

18
- A | a2 o
P:;:‘ X B <
(3.17) ?KK DK " N
S A A ——— :‘;{:“\::3 C— @
(R ] Ly [N ] Ly

NI
or l’,"_,
G23) kg KD
= %-(az + pﬂ—le = % ::4;43 ;FE;:? [zg)
! Y |’ Y f
N | Qi
Similarly:
25
- &= | | &= o
Pg‘s o A X I {1
(3.17) KK Pﬁﬁm_ Co« N N
T P e
or ¢ g NI B <1

623 Tgg pkD
= Robir ugs ":31;5 \ CFEVLZF% " ";{'J;B \ CLr:Fk:rﬁ (2%)
X B {1 'R I {1



5. Tangent space projector

TS-L.5
Let \V 18

denote the 'tangent space' of |1 , i.e. the space of all 1s variations of 1P :

V’IS =

span of all states \\}'7 differing from "J:’) on precisely 1 sites

o ¢’
- 5{“"'\ 2|1:P>" xj_“ﬁ_(i ¥ 7 ,‘;,eé[\,f-}z U')
£
formal definition: = Sram { 1 ( f’(‘s) l £ ey ,cﬁl g )
image
The 'tangent space projector' is defined by the property that its image is the tangent space:
. Is
Ve = w(P) = wm(PP) o i (7)) pran feleg] @

T (t3)
Formally: £ has the defining properties: (P*) = P'sl p'* ﬁ‘_‘ = ‘?f @

We seek to construct P‘S explicitly. Note that Zil 'Pl',s does not work, since summands are not
mutually orthogonal (see below).

We attempt to orthogonalize them by a Gram-Schmidt type of procedure:

) 1S
Define %C ,

>

obtained from P; : by projecting out the overlap with 'f}’fl g (1€)

Rt = Pty - BF)

24 subtraction generates D sectors! {"o)
(4.23) PK
= ’ /) I
b (429 D
pis - = [\ S
L Pk-t L, e CF_\, v ‘,5 (19

Note in (17) & (18): subtraction generates D sectors, via (3.17) & (3.24):

;}D(sfr ‘_‘Q* i *;‘L_D CrL_i (S.z:\ *C: ) ':L’; “

Due to the D's, the following orthogonality conditions hold:

Is 1§
Pte Pz'§ - Seo‘ Plé
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IS
Pté Pl'§ : SM' Pf < ,
/ B > — —x
forall [ <2 : ?L< P£'> = 0 e.g. E 1 r N (z°)
' r v T
1
0
, pls s ’ s e
forall fS4°: Le Pl' = o e.g. , (0
‘;JI—];Q 7 v 1
Tangent space projector is defined by following sum, where €’ can be freely chosen from 2 e [‘. 1]'-
8'—' 3 L
p' .= Pt £ Py + 2. p's for any ﬂ'e[] ,ﬁ) (z2)
L< e =04 > ’
=1 *—-vu‘( = 2
)
g Po-ye
-1 L
Pl = E{;‘DC&:#ﬁ-\—#\c: £+Z :‘é;é:#c;‘;ﬁ
=1 TAY ! ¢ = £t ¢ (1)
(»

Projector properties (14) hold, because the summands are mutually orthogonal projectors: For example:

£-1 (s 1 £ s\ s (s
¥ Lle [(,Bﬂ\: Pls Pe’IS = ( [Z__l Pﬂ( 4 PL' + ezg—.e{” ?l> ) ()‘I s ee, (2¢)

hence (13) holds: ;M(P';) < iu«(?ls) forall Celv, L]

Alternative expression for tangent space projector, expressed purely through bond projectors:
use (3.17) for 0" term of (22): D) * = (;‘lL—J ¢ %

(z5)

@ ¢ ;
Pls? Z'I'_;l,_l_ﬁ? C‘EV—‘:Y‘:‘FQ +%ﬁ%#ﬁ ! Ezﬁ#ﬁﬁm

Another aIter'native expression for tangent space projector, without any D sectors: use (17), (18) in (22):

{-1

_ b £
Pt = [Z_.I(P;S_ ?2 ) + Pr t "Z::e,“‘?‘: - P,bq) for any Qle[),aﬁ) (28
p Lo £ ﬁ-—( (ze)
P Z B2 = 2 5:;‘;5 \ c‘F:F‘:‘Fc - Zﬁ*‘;%;j‘)c%&;:r'ﬁ
L=t 2:1‘ L= NI I Y =1 2 £
-1 41
m)

(26) for tangent space projector was first found in [Lubich2015a]. It is often used in the literature [Haegeman2016],
[Vanderstraeten2019, Sec. 3.2], e.g. for time evolution with time-dependent variational principle (TDVP), see (TS.6).
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