NRG IV: Dynamical correlators NRG-IV.1

Goal: computing spectral functions via Lehmann representation using complete basis.

1. Completeness of Anders-Schiller basis [Anders2005], [Anders2006]

D
The combination of all sets of discarded states constructed in (NRG-IIL.5), { |0<, e>£ | {= 1,,'," L i

forms a complete basis in full Hilbert space of length- £ chain, known as 'Anders-Schiller (AS) basis':
&(proof follows below)

by definition ’?éigfgfrigtlon
Z‘|6‘x5<€ﬁ\ - 1A£xdx = ZZ de? el W
% o« ez

These basis states are approximate eigenstates of Hamiltonian of length- £ chain:

2£[“Q> = \i\e‘u e)l = Z\oc Q> ()

Here we made the 'NRG approximation': when acting on states from shell £ apprOX|mate l»l‘;(
by ]’:‘ i.e. neglect later-site parts of the Hamiltonian. Justification: they describe fine structure not
relevant for capturing course structure of shell { . The AS basis thus has following key properties:

» For small ( , energy resolution is bad, degeneracy high.

«As f increases, energy resolution becomes finer, degeneracy decreases.

Projectors:

) A% X ¥ LR )k e
Projector onto PL = 2 \uc§¢ fuel = . l) SR IRE (13)
«e LAY e
)2

sector ¥ of shell { :

K and D sectors partition shell into two

! x'x pY
disjoint sets of orthonormal states, hence PL ﬁy = S (OL (1e)
Refinement of K sector of shell ¢ : pe _ oo pE « < e
' L~ VLY Y 2 Lar (rs)
) "\31’:
Iterate until end of chain: = ?u: t an - zz = ... (e
Z// U
K X D
Hence: P, = 2P, = 2 Pu . B = 2; Py ™
(forany £">¢) * Y
£=4 P° . P, Lo
FOI’ = ° - ﬂ.diklz = lb 4 C') = Z‘-l Pg ('gj
;_9
C =2
¥4
Unit operator can be expressed as sum over D-projectors of all shells, hence AS basis is ciomplete!
{ X :
Y o §Kx PS if Lz A
! /
General projector products: ’(31 = (¥ ¥ 'Pz if L 4 (1)

! ]
P iy
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Graphical depiction of completeness of AS basis

1zs =2 to-0t © t ©f o |.. | of

J o o,
£ 6?&.9 629 6(.1'] 6‘01'7. 6‘
- — w_ - 4
shorthand system environment
[ L [ =y
=X ) T—— %0 | [ [ ... L)
O:CQ‘ cea “ llf lo IPT' [v‘l' IR i
Transform to basis which diagonalizes sites *p to l o , keeping (K) the full spectrum at each step):
= 2 Z LK, K KQ LD
A& TR K 'K l | i .- |
o ‘( 'lf 'eo '(vT' ﬂ.f'l. :f
Split into discarded and kept states. In latter sector, move one site from environment into system:
D
= 2 Z [ { K [
o e’!. v T ! §MD® , \ I “ e l i
split ""f Lo {p'ﬂ o4
+|<
(4 1 K (&
22— . “_buK@s,:w}c@ I (P I
£ 1 ,fo LH ﬂon, «
— .'f Y 3 \ r—————‘
larger system smaller environment
Now diagonalize, split again, and iterate:
D
K ( K ¢
y — RO | |
P T T K]
“‘e lof( ﬂﬂ*?. i
split +
K K I
£ { \
32 ' = L
F gz‘;“ A Tk ' K { ﬂ - .
fmp eof( o+ 7
Iterate until the entire chain is diagonal, and declare all states of last iteration as 'discarded":
ﬂ + [{ \ \ { 1 i L 3 K \ o D
Z Z v v T T 1 T ! N K N vl l
N '1 €o-, ‘(-»\e L1 I
D g A { { \ ! ) . N
2 — 3D
1 . A} 1 T T T T T K ]
llb‘e z
The collection of all terms marked is the resolution of identity in AS basis:

{344(‘“
= 2 L2 7 r:,;wD@\\l(\

L34 g "HQ ‘ { L+
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2. Operator expansions [Weichselbaum2007], [Peters2006] NRG-IV.2

non-trivial only on sites —¢, ... ng

3

Below we will show that the Hamiltonian and 'local' operators have following structure in AS basis:

)

4 N \
H\ > f,o:l
= D S~
H i, ; z g o=
D
K, b }
- Jr m-n
Hamiltonian is diagonal: General operator: exclude KK to avoid overcounting!
("/
(‘ v A _ #KK
[t 22, Evlae), Yael, B = % XZ ‘“@3( [Bis] 3ol
X

Operators are diagonal in 'environment' states! Hence environment can easily be traced out!

n N
The expression for Hf follows from (IV.1.2). That for a local operator 3 can be found as follows:

A
Suppose 2 isa 'local operator!, living on sites < £, , e.g. on sites (Mf) and o

" :m‘s 6'0
R = { \ @4@ ®+ © + © 4 o ®+ @)
6‘“’? “G' ! 6» e, ¢l S¢ota 6£

Start from the local operator's exactly known representation on length- A o chain,

IS A T O ST S

xx' e §K, D} >< " X
a r\(‘ A ALY

Define operator projections to X'X sector of shell % g[ y = f,B 1°z (f)

gj_k |1 % « i —

o (c_f © > X l\l( (AeLEL K
o x' Ly | \\[{ - F Gl e
B = B -4 (L =

o X \ ( el K
L3 hd k e { l
- —~P Y { (no hat: matrix elements)

with matrix elements

o X s = X&
{
EX = ig ‘ ? S | &)
ao ¥ ’ v < /!
L

o/ T « 3
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can be computed iteratively during forward sweep, starting from £ = £,

- 5!( +" F{Y ) KHfY‘ )u‘ { K 1§ F]K \fs‘t
LK ] ¢ - L,(‘FB Kkg,[lx )

- [
only KK enters here! /" € - X F £
€ (.
Refine KK sector iteratively, using Pe ("I-:"') 2P zx
% +
~ N FKKA v A &
K - ok o aK X X Kk ~ 2K
Bzo 3 lo 6 p ° - %/ P&,“ B P‘o'h ! P[bn [,H (9>
. ¢K/< Al A iy Fkk A !
Iterate to end of chain: = X ¥ X (o
2 Z PBE = 23 &, )
Ll X'x 0he x'x
A A x bo) z *Kk A xl #KI< Y
Full operator: = = 8 = - T \
ull operator: B ; Bpy= 2 > 8, % o R H (tr)
L2he x'x b

Note: matrix elements are always 'shell-diagonal' (computed using same-length chains).

Time-dependent operators

A . ni - ";C *t KK
H* ¢ = P g - o ox
B4) = " 7 g e =2 2. 2L B, W) @)
e X%
with time-dependent matrix elements, evaluated using NRG approximation (1.2):

1

‘I\ '4’ . t ‘){.
X! ' x (HEL & -HE ¥ X o i(Eq ~Ex
B* 8], = %orle B.,]" ¢

qa

Be | '72 = [Dg g (3)
Important: since we ige;rativelyé refined lonly KK sector, the time-dependent factor is 'shell-diagonal':
factors with € ¢ (Ex -EL t, £ # 4 do not occur. Using different shells to compute

£, and E o would yield them with different accuracies, which would be inconsistent.

(12, 13) Kk A

Fourier transform:  [2(y) = Joﬁ; e“”té(.() = 2.3 B X (w)  09)
2n ¢ xx b
x/ v' XI o)
S R R A O i
A A
Operator product expansions: BC Proceed iteratively, refining only KK-KK sector:
K A K _ AR~ AR ~K (,_i,‘) ,‘x/,‘ "X""‘x ~ "y ,.XI
By Wy = R BELP, = Z 1, 8 F,C7%. Z’ ol v @
X'x'x Xxx"
Startfrom [ =/,  and iterate: (g
a A Aoyl A x! Kk A g # KKK CD|X
8C =2 By, » Cy, « = 2.2 8, G X = 2. 3%
"yt v 4 ' { A ' X
x"x'x L x"x'x £ x"x'x
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3. Full density matrix [Weichselbaum2007] NRG-IV.3

NRG approximation [
ne
et i zz ey BB Ree - 2 Al
_ ¢
Lo

{
- % flfl) ’ [Plt.)ols

=de

V4
L

o (2)

"

- A ) A x' X a .
Sector projections of Jo for shell ¢ , defined as f)ie]x = P jo PE , are given by:

(1. M
A D AK A1 a K
- ~ 3
/JKD 7 ﬁ[ g %LF[”D s ‘P.Q 3 P_f =0 ®
provides refinement for rest of chain density matrix is sector-diagonal

Reduced density matrix for length- E chain is obtained by tracing out environment of all later sites:

~ y! — A x' ( = K ry (j)o ) l
= e}
L1y s,us g J°£ N Lo TPk

d N-£  degeneracy of environment for shell ,e

ijbfhm iﬁ 5% ©

|nd|cates sum over local

DD-sector:

basis due to trace (no hat: matrlx elements)
with matrix elements
£ L-¢
—D ! D o! x-—[ @® o {‘ ¥ D
- _ b
[F ol = Lo £ = e ¢
2 -
: 4
D -BE density matrix of lati iaht of
where £ L= 2 é ﬁ “ ¢ D-sector of shell ¢ E:elc\grmgeflgsmlcl) Y
o (without environment) to total partition function,
is partition function for D-sector of shell £ with 220 =
(without environment) e ¢
KK-sector:
" (K/l n 0 Q,
FL KK - 2 hf_w)if’m FLKK
! t [
dse ﬁ 0 %, <
» J"’ (¢'Ip .
d( K&K “« D — D /?.)x - X (2)
_PK = Z_, ‘ S i(> fl‘ D = Z L Tk {Jz“ x
K N Kot Y Ko—l)r D Q\ X Xt

Starting at { = &, the KK matrix elements can be computed iteratively via a backward sweep.
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thermal

‘”z suppression

The weights wL , viewed as a function of L , {5 counting
rb /\ suppression

are peaked near lT , with a width of five to ten shells L

L
(dependingon A 4 and D ) T
| “ _%\Ml

Reason: the Boltzmann factors ¢ ~ /g Es in partition { = 2
functions yield & & for sz s> T or =~ | kv
for Ef << T . Hence
4 -(£-Y2 ~{2-
(2 dc’; 52 o —FE Ai—z  FA .-t f (L-4f
‘LJZ = % = l = d e (%)
Z Z, Z o -PEL > 3
v'e! >0 ¢
- 144
sum over environment of shell Z 7 yields 3 d "

Thus, the weight functions ensure in a natural manner that shells whose characteristic energy lies close to
temperature have dominant weight, while avoiding the brutal single-shell approximation 402 = S,, ¢

Thermal expectation value: SX" due to trace
2.18) A xh o X'
~ a A ( —
<B>T = TV‘{P B] = ]T[[‘)Lo x' X ] (r0)
definition shell- £, X"%'X —
representation @) s"')'{,

(, operator trace
A X . 2 X A X
% all sites [ﬁ e 580 X\/; % sit!agﬁe [ﬁ‘w Y BB" x\ "

trace out all sites £ > £,

XA
¥
Lo

trace out all sites £ £ £,
(close the zipper)

K » X

w matrix trace

- X X __ —_ X 3o «
ST ARRRRE 1L VAo

can be computed using solely shell- [, matrix elements
(but reduced density matrix requires backward sweep along entire chain)

Note: traces of shell-diagonal operator products simplify to traces of matrix products,

with full density matrix replaced by reduced density matrix.
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4. Spectral functions: full-density-matrix (fdm) NRG

NRG-1V.4

[Weichselbaum2007] [Lee2021]

AS basis, being complete set of (approximate) energy eigenstate, is suitable for use in Lehmann

representation of spectral function, with the identification

¢ (NRGIL1)

A ()

—
—

[t eiot T f B> E]
it

R Zldc):’

YR 3|

= Tr[3W) CF} ()

trace is cyclic

Insert representation of these three operators in complete AS basis:

u—[zzzm'u( 2] X

x “+ KK

ek

XX

&Elo?é

'

P’<ZE”XQ> U),e n} u&x@

ot

\} @)

£ KK

Looks intimidating, but can be simplified by systematically using (NRG-III.5.12) for overlaps.

Simpler approach (leading to same result) uses operator product expansion (2.18):

RC " ~ L # KKK
Alw) = T-[8DER) = ZZ T¢[3£ @ i (c.p) « ] A
X" '
trace is cycI|c BXHX
Perform trace in same way as for thermal expectation value, (3.10): trace over sites ¢ '> £ vields
reduced density matrix, trace over sites ¢ ¢ £  yields matrix trace over shell { :
3 X
# Kk ! 4 X
¥ X ~\ X
)4(6.)\ = ZZ 'l’f[ L(h’\ x! (C’P);C x] EI. v (@)
b X% g 2
# KK ® t
_ X ¢ L x' =X o
= 27 S e v Se-EEe) o)1, [
L X% i (s)
resolves frequency at scale ()~ A~ 2
Each term involves a trace over matrix products involving only a single shell.
Easy to evaluate numerically. 2 e
E = E“( - EP(
To deal with delta functions, use 'binning': +_ L
partition frequency axis into discrete bins, L £, = T
centered on set of discrete energies, ié 1, and replace L ‘__ """""""""" I £ T
$(w-E) by §(w-€) = Ee I, = T

This assigns energy ¢ to all peaks lying in same bin.

Finally, broaden using log-Gaussian broadening kernel,
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(NRG-III.3.4).



(at particle-hole symmetry, ¢d = - U[z

Spectral function of Anderson impurity model
and zero magnetic field, £=0 )

+ f
dsds/_w\ . ,4”(5’(5 (e0)

w| =
Alo) = A
Can be computed using fdm-NRG. Technical issues:

- Include Z-factors to take care of fermionic signs.
- Broaden final result using log-Gaussian broadening kernel (NRG-IIL.3.4).

Result: for [/ << | (eg.=0.1) and T <2« Tx (e.g. = 0), one obtains

T/Tg =0 |

- NRG correctly captures width of central peak

Te // around & =9 , the 'Kondo resonance'.

NRG overbroadens the side peaks,
/ which lie at high energies.

A('W‘)/ﬂ(o)
|
I

0.5

—— The true form of side peaks is narrower.

1 _0'.5 (') 05 1 Over-broadening at large frequencies can be
reduced using 'adaptive broadening' technique

w [Lee2016].

T[FA’s(W :'-0) = |

<ord i Dknft is large enough.

Exact result for peak height at T=0:

NRG reproduces this with an error of

With increasing temperature, Kondo resonance broadens and weakens as | approaches and passes T.

T/Tx |

1f T/Tk 1
0 0
0.1 0.1
— 1 1
D
§ 10 2 10
X 100 hod 100
3 . )
?'i/ 0.5 ;z/ 0.5
0 L 0 L . . L "
-1 0.5 0 0.5 1 1072 1071 100 101 102
w u)/TK
Sum rule: we expect (for any temperature): )
—

de 45(“’) = <dt”{5>‘r * <‘AS 0{: >T = <{0(g,0($f3\>_r = (.

-5
Due to use of complete basis, f{dmNRG fulfills this sum rules to machine precision, with error £ ro ‘
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