Infinite Time-Evolving Block Decimation (iTEBD) [Vidal2007], iTEBD.1
[Schollwéck2011, Sec. 10.4]

Goal: ground state search for infinite system while exploiting translational invariance.

We will use Vidal's p/l notation [see Section 2], but the strategy can be expressed in other notations, too.

Basic idea: 'imaginary time evolution': i o ’ISH hﬂ o< l67 O
Ig -0

Reason: high-energy states die out quickly (if ground state is gapped):

A - -3 00 E'
e_-'f“f = 7 e‘/gH ot D<ot | Lo, e~ ¥ 3 743l @)
o<

. complete set of energy eigenstates projector onto ground state

1. Trotter decomposition of time evolution operator [Schollwock2011, Sec. 7.1.1]

a A A "
General: write Hamiltonian as H = % Kl = Ho +  He (3)
/\
connects sites e and ,€+( odd even

A a -

z‘-l K& 46
& o o & 2 & . * )]

{ 2 3 4 s 6 # 8
'&\ rds ‘KS ’ﬁ ?

Then all odd terms mutually commute, and all even terms mutually commute:

(£ . A p | = o if £ arebothodd or both even )
Divide time interval into N slices: /3 = TN é — _7 T "_ — é (e
A Trotter . A A/ A A N
. ’PH decorrzoswlon [6 -T F/] : [e ~T(H, + [e ) ] @
" l:(\ N
Né—) % =0 = [e - Ths 4 The ¢ (9(751) :l 'first order Trotter approx.' (8]
» 0 : N 0]
— - - t
or o {e I’i Ho e ThHa e Ho + (9(“c3j ] 'second order Trotter approx.'

Exploiting (5), odd and even exponents can both be expanded separately without further approximation:
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So, when applying ¢ ’/5 f to \\la7 , we can successively apply all odd terms, then truncate,

then all even ones, then truncate, etc.
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in MPO notation:
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since (—19 factorizes, even bonds have dimension Dy, e =

-
-

\

since H o factorizes, odd bonds have dimension Dw -

All of this can be done for finite chain of length f . But a simplification occurs for L —oo

Then we can exploit translational invariance: M, V’ie, Mo Me Mo Mg

S S G G G S fel

Adopt a two-site unit cell (no left- or right-normalization implied).

-th SVD
Step 1: time-evolve 'odd bond'": Mo e ° Mo M MTD ’%“
//) i ' truncate
(first site odd, second site even) l
A ,-the @@ SO b &
Step 2: time-evolve (updated!) even bond: e o ¢ e Vo e Mo

—_— & -?—?—
[ I truncate

(first site even, second site odd)
Iterate until convergence! (To discuss details, we will use 4\/\ notation.)

iTEBD is a 'power method': the projector to the ground state is constructed as an increasing number of

powersof €~ © He , - THs

This is to be contrasted to DMRG ground state search, which is a variational method.

Main advantage of iTEBD: costs not proportional to system size, hence comparatively cheap.

Main disadvantage: loss of orthogonality due to projection, without explicit reorthogonalization.

to be explained below
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2. Gamma-Lambda Notation [Vidal2003], [Schollwock2011, Sec. 4.6] iTEBD.2

Usual bond-canonical form of MPS:

(H < ‘QKZL‘@F%H [Sz'l“? (1) m;—o—gm;

V— lv
Choose 3 diagonal, and call it /\ (following Vidal): [1}"“7‘"“ §F>e“
KR Y
“[’5 = % NZ“);, @“)zn [/\ X,} (Schmidt decomposition) = @)
(/\o(o( L

Then reduced density matrices of left and right parts are diagonal, with eigenvalues L 3 :

Jo o} /<r‘

= [t = L o
=Tt = 20 VM), E, 0 T e
[ Lo " A,

)
e - w boal = Z 184 (NN (- Ean o
[)"ca,&loc°< A

Vidal introduced MPS representation in which Schmidt decomposition can be read off for each bond:

P\ A\ P7- Az GL Al PIH Fi
4y = *I—’—O“—I*O_‘—I—"O—‘—I—’—O—‘—I_)—Q—*‘[‘
S L ¥} 6g g s)

where A p = diagonal matrix, consisting of Schmidt coefficients for bond £ between sites f and A+1 :

s ¥
4> = l%‘)&‘éh%ﬂ /\z P PL,L'-': Al Aﬂ- = /\-\; AL::/)‘E'K )

— ! — \
with orthonormal sets on L: z< Q| '-_EODI = 1% A )

and on R: é@p ‘§$5>£ = _]]_{5‘]5 (&)

Any MPS can always be brought into (‘/\ form. Proceed in same manner as when left-normalizing,
cf. MPS-1.4
m M MMM [ ]

o = () (¥ M%) T T @
S
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Successively use SVD on pairs of adjacent tensors: M M = usv .I-I’( = AM o)
() t/—\::_/ ’/
to bring MPS into left-canonical form, A M

store singular values, /\l = Sl and at end define

6 = S = A -\
Ap = A.l-l (‘LL 2 A° = ; )

| Ry

physical index 6,_ of ﬂe is associated with ‘}

A\ A, ﬂx Ag
= 3 I | y !
('] ( A?. Af. Ai,
~" ——— —A— —~———
- yﬂ Al P?_ /\‘L AZ" Pi A.ﬂ I F&C (‘S)
% - 62
Note: in numerical practice, this involves dividing by singular values, (:E 1= /\.C-l ﬂz (cq)
So, first truncate states for which SZj = 0, (t5)

Even then, the procedure can be numerically unstable, since arbitrarily small singular values may arise.

So, truncate states for which (say) Szl_f z (> ¢ . In practice, this should be done in (16)
any case, because when computing norms and matrix elements, singular value < contributes weight s*
and when s < (a"/b , its contribution gets lost in numerical noise. Inverting the remaining

. -9 . I . .
singular values, S > ro , is unproblematic in numerical practice.

Similarly, if we start from the right, SVDs yield right-normalized @ -tensors, and we can define

% % By 7 M
b L = Q A L, A g =V -<—l7+- = TO+ (%)
. 6‘ ‘e -t
l.e. rjc I = 52 A£ (l?)
So, relation between standard bond-canonical form and 'canonical & /A form'is:
a A A A 5 5 B

n A
\"-Y? = V-I—>—O—<—I—&O—4—T—>—O—<—i—»—o—<—1—>—o—hr D)
TP H Y A N AP
A= A Cﬁ-('g L E:j: ﬁ—-x{I (e

'q S

_ r 1 N
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g € A 0y

(20), (21) guarantee the orthonormality properties (7), (8)

If ﬁ has very small singular values, Q must have large elements! Can lead to unstable behavior...
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3. iTEBD: Explicit formulation [Vidal2007], [Schollwdck2011, Sec. 10.4] iTEBD.3

”e Me

For infinite, translationally invariant system, use two-site unit cell, Y Y repeated periodically.

(to avoid cluttering, & indiceson ', A are not displayed, but implicitly understood)
Each iTEBD iteration involves two steps, updating first odd bonds, then even bonds:

0 M M
tl\-,, J:/—\'i'n,_fifs/w M, =Ae

) = - see R S .
IP ML=A9('Q
= ---(/\e ‘\o)(/\o (;)(Ao. I\o)(Ao Q) (Ae PO)--- )

1. update | _ a o~ o~
odd%onds: lj(o [ | yields new f’, /\,r,
o T — T
. (Ac L, Xo (‘C /\e\ f‘o Ao . A, (‘° . butleave Mg unchanged
2. update 4 | l x . = (za)
even bonds: Ji(e I T T | - yields new Ae (‘o
Ke f: ( v r; /\\'c F., /\, > (\e_ e fo but leave 7\9 unchanged (o)
2
A ’6_-c Ee
? - -Cdo & 4
Step 1: Time-evolve odd bond 'n. Ao (\o, (Ao = = | p T ] 3)
and its environment A, . A, %, 6o
Mo M +
O contract,
/\.& G A ° (; Ao reshape, 78 S V

= - = —>£—__D—>—o—&[&<— (ka)
b S N A N

right-normalized

° S, truncate,

normalize [see (7)] R’ﬁ ° /\o Eq

. o~ re;r}ape i \*c’ - . e (eh
define f, - A, A, e : g

_ A ~1 :;Q =-.("

(e = Be e reinstate /A - Yl M

A A A A B Ae e
= —-—- >1 —O—¢ K oo ()

define left-normalized ~s f:l\; =M o € not right-normalized

A ——
/M/? - ~

e ° 0 e Ae )

1l

'y S{-r ah ~“+7
/\ = y v, then C}::Zj:) ’-‘TTI\OA = 1.
[Tr( S b S‘LYQMYX/L m /\+ 3* /\Q ° »)
(6) _ ~ ®
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~Yirtane

/\ b ' , then Lj—‘v—é—t—Lh) = @ = Te K:A = 1.
AN R R it © e

o (6
lgd =

—
N~

al=

(6) completes update of odd bond. The updated MPS now has the form a ﬁ e A, ﬁe .

Updated bond energy : Aell Ao @ Al Ao
O—( OO
— - —
ez s CEED.GED
&Gm 4 '(:\ ﬁo + { e /j‘ m *
. . ignore tensors f
consider only two sites describing rest of chain

—

Updating odd bond lowers L , slightly raises f,_ (‘odd bond much happier, even bond slightly unhappier').

~ a ~7:2L g 45
Step 2:  Time-evolve even bond_ (oNels Me = e ¢ = #‘ ko)

~
and its environment Ao ... Ag

G 6o
updated! dated! _.2 _5
_peee sty contract ;@_‘ =T
~ ~ ~ reshape, ~ T "' ~ -t
Ao G A, C A, SVD, N A, A. Ne B, Ao /e
z —o—o >t —o—o—
A~ e o reshape, 1 K
e ¥ T ! truncate, % %\ LS
6e LIS normalize, ~f
reinstate with normalization Tt AeAe =1 ®
~ ﬁ—_' or A A
define Q = Ao Ae left-normalized > {4, Mo L not right-normalized
~ ~A ~
F, g A-\ - z = ~
o = o N ° _ /\o pe. Ae Q A° (t 3
. P A r g = >0 O
Mo = e o ° Ae 60 A" } 4

(12) completes update of even bond. Updated MPS now has the form | $ ) =
Compute updated bond energy using (8), with © & e

Updating even bond lowers ﬁ o slightly raises f , (‘even bond much happier, odd bond slightly unhappier')

~

Now iterate: rename Me,e" Hv/z ; A.,, - Ao,o,

n

then apply ({,

{:',¢ - e
A
,then (L, , etc.) until convergence is reached (monitor ground state energy...)

Remarks:
~f pored

1. In principle, computation of Ao , /\,, can become unstable, because singular values

. . . -3 .
can be very small. Thus: truncate by discarding smallest singular values < /o~ , only then invert.

~ Lt (6'5) A N Pl |
2. Notethat #, is left-normalized, but M, = A, 8. A isnot! 'Loss of orthogonality'.
~ A (l?,ﬂ) Ar A ar—|
Ae My = Ae_ & /la

This causes problems when computing expectation values. For example, odd bond energy, given by
"Te ﬁo VTQ_ Hb ﬁe. ?‘To ﬁa 2-.,

% i V. @A A W
T3 T [ T /T T T7Y77 73
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. ﬁe_ ﬁo ﬁe Aa V1E. R\s ﬁ- WD

e ﬂ-q_ ﬁp He_ ﬁ; ﬁ!. ﬁé ﬁd zb
. S >
DODSE10aFADDOD G
does not reduce to (9), because zippers can not be closed from left and right. Hence (9) involves an
approximation, namely ignoring the rest of the chain.
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4. iTEBD: Hastings' method (optional) iTEBD.4
[Hastings2009, Sec. II.A], [Schollwdck2011, Sec. 7.3.2]

Goal: avoid 'reinstatement' of /\e, Ao , since this requires inverting singular-value matrix.
(i.e. dividing by small singular values)
M" Me.- Mb

—t— ———— "\

_ Ae 1 Ao N Ae 0 4
Write ¢) = 9—0—(—{—»—0—(—14—.—(—;%—0—(— 0)

60 69_ SO

with Mo = Aels e = NoTe |, B, = (LA, Be = Mo e (2)

/

Step 1: Time-evolve odd bond Mo A, Be todefine Ao As Be via SVD, and Me. via contraction.
\_‘-\’__q

(instead of reinstatement of /‘e)
A A

Step 2: Time-evolve even bond Mo Ae 8, to define ﬂe Ao B, viaSVD, and M via contraction.
—

(instead of reinstatement of /\ )

Then rename M‘,"—? °e , /\.‘e - /L,,( Bo,p, = gqe , and iterate.
M e é, 6,
Step 1 (odd-even): Compute A M d =: === =: € ?)
—_— o
U_o % +€ *‘6
6-0 ce e € ~.‘ ~~
(’er Ao - ‘

known from initialization,

! _ ! left-normalized el
or previous iteration v,

right-normalized
4

~ A

(A Ao N
posvoon A, +%Z%ho-e W (1
truncate
normalize,
etc.

~ <~ A ~ M e /\ e
SVD vyields updated tensors A, , /\o, Be . Note that the outgoing leg of 74, involves a truncation,

governed by /\,. Since this is also the incoming leg of what will be called I‘A'ie, we need a definition of the latter

involving a truncation governed by A . on its incoming leg. This is achieved by left-contraction with A,

+
',{-463 . a éd, be [symbol M denotes: (s)
e o6, Lo not left-normalized, see (7)]
(Note: no inversion of singular matrix required!) Justification for this definition: (2 = F’;_
I
- ~ —~ ~ ~f
a+ 6, 68 (3) Ae— Ae- ui) Ao 0 Se A&
°g, éo - - (o)
" o
LO ac JD G.Q
4+
f ar t left lized
~4|, "'6, ~ ~ » / not lert-normalize
ﬂo5° ne = .’“_ _ Ao Pe (S-) Me,

= +o—<—z—>— =: —>—I—7— ®
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NT \ ab ~ ~ / oo
s, A7 = 1 Ao (s) e

It
+O+,¥E)— = _)T_ ©)

A A, -t ~ A Al ~1
where we associated Q = &C Ae and M, = /\,,Q by analogy to (2) [but did not need Ae explicitly!]

n

(®
This concludes step 2. We now have updated tensors
M= 4, , A, — A, , Be — B . Me — /57‘; , but not updated /\e B,
Step 2 (even-odd): Compute >Me— s q°> - =T = é%ﬁ'o @
he —= Y e
6, 6, e °
€ e M{.N
r A/

e e =
left-normalized -2 / (..right-normalized

66, A Ao SvD Qe Ae Eo (j )
Do SVD on ée o = Y740 = ©

* 6o {\60

known from step 1: z

% S

Ao A
The SVD yields updated tensors ﬁ'e' Ke' §° , and a . hasa /—(’g truncation on its outgoing leg, i.e.
incoming leg of what will be called ﬁ o , SO we need a definition of the latter with A: on incoming leg:

This is achieved by:

~{ 6,5,
ﬁ €0 = aes (13 ¢ [not left-normalized, see (12)] )
o e—e . ‘_.F not left-
Justification: ,l normaIizeLd/_D
~~ A ~ —~ ~ Al ~
~t 66 @ Ao Ao (0 le Ae &, Ao Mo
A, & 2 I ArosOs = A P
Qb’e e /L
- t% g " (2)
~ 2
ﬂ: n;(:
A~ A Mo ~ ~ ~a
where we associated C = @o A o, and Mo = /lef:, by analogy to (2) [but did not need Ao explicitly!]
(3)

This concludes step 2. We now have updated tensors
~ ~

Mo fe |, Ag—> A, B, =B, H, — 4

o

without changing /A\") Ee

n A
Now iterate (apply [/ o +then (Ae , etc.) until convergence of bond energy is reached.

Compute bond energy using (iTEBD3.9) for step 1, or its & «e version for step 2.

Concluding remarks:

Main advantage of iTEBD: costs not proportional to system size, hence comparatively cheap.
Main disadvantage: loss of orthogonality due to projection, without explicit reorthogonalization.
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5. Orthonormalization ~ (optional) [Orus2008] [Schollwéck2011, Sec. 10.5.1] iTEBD.5

Needed for computing correlators via transfer matrix.

Definition: an infinite, translationally invariant MPS with two-site unit cell, expressed in the form
[Orus2008]

A Ae a,

— ey —— A\ — N\
h(’ ) Ae r‘o A © Pe A e r1\-: AO
= -)—.—b?—»—o—ﬁ—)—o—(—i—)—c—& 0
—_— Y
B, Be &

is called 'two-site canonical' if Iqo'e are left-normalized and  §,, are right-normalized:

Ao fle_ B Be
[: = ‘ (Zo.) [: = ' (zb :] = ' (z¢) I:] = ' (24)

& at 8 &

ro {\G (‘, pg

2 1 t 4l
A,.: ‘ = ' (30) Aog = ' (v | 8/\, -_—.‘ (39 Ae=‘ (sd)
*-
I 0 f it ot

Correlators can then be computed using transfer matrix methods:

. > A, Ae A. A, A, A. A,
< 0 O , _ cer — ' = - -
b ol%, o,.,} @

close zippers

0>
&
o
&
i

ﬂ_o Ae A, A. A, /}3

Problem: iTEBD (including Hastings' version) yields infinite MPS that are not in canonical form, due to loss of
orthogonality. It is possible to restore orthogonality (albeit at the cost of inverting singular value matrices).

1}

Strategy: given H'Q'}\‘,,(‘c'/\w?> : Aole he €, Ao (o Ae 05 Ao

2-site unit cell e e s ——————
I n u ! I )
! in! . r\ r
Step 1: 'coarse-grain' to getﬁ C, /\} : A: ﬁ»—+——/o\—<——1?———>—/¢'§—¢-
-site unit cell
rl'.= (\eAQE , A‘.: Ao
Step 2: bring into 1-site canonical form (t F X} : A: ;__,P__/g___‘__‘;_»_é\_‘_ (s)
1-site unit cell
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' - A -—O—t——ﬁ—r—c,— < N —— v
//1 1-site unit cell

(how? will be explained further below)

f §
~1 ’7.
Definition of 1-site canonical: A g i! = + (6a) A= * @
3 A + rf
A g O . . .
= 3 Ieit;caninlc‘al 1 . E.r|ght-fjor1cal
Step 3: 'fine-grain' via SVD, N ~A SVD Ay Ao A Ae 8, A A, &)
reinstate N =N R B ‘__,Y__’I y .
° reinstate \ - o~ 4
~ A N Xo f’ A r, Xu
define ir'e, A, ,FO'AQZ ; - ®
2-site unit cell
wih A=R ), Afe = @, LA =8 @) LAl = T @y

~ A ~

Claim: i e, /\e , f'o'/\o z is in the desired 2-site canonical form.

~

Proof: Since ﬁ)e and 8, were obtained via SVD, they are left- and right-normalized, respectively. Hence:

~r

Q

i {,

. ( g 2 (1b) -

/\: 94) O _ + v’ (um) A° = A - + v (ob)
= —<— as required by (3b) r

as required by (3c)

ﬂ

fo LA B f
(o) . (Qo. W), (@
Moreover: ﬂl = Aogz\ A {E - + v (1ra)
A At x f i
° e Ae lo
S A §
and: 8 (m‘) (_i Z 8 (’a *) i (GL))r v (nh)
rt

Back to step 2: How to bring arbitrary 3(’, /\S into 1-site canonical form { " ) VAN i:
not 1-site canonical

( (
Starting point: 2 f/ b 2
(henceforth we draw single B A 7& + * + A 8 I (1)
line for double physical index) n

rl

t

-

Thus, corresponding P A &

: R
transfer matrices are  <7¢ <€ 7> >
not normalized: N :I: , S }# N, ~ l ) NS 3)

v
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Goal: normalize them! Strategy: 'divide' & by the 'square roots' of their dominant right- or left-eigenvectors.

Find dominant right- or left-eigenvectors of R and L , and take their 'square root":
LS v ] - )
Ve \ X \/L{]" B \ y
\// '%l */7‘1, ? R = "lth (e . N = \k ? L = vl %Y* (t4b)

largest eigenvalue \/1< = X X (1) VL = Yf\f (r4 o)

n

Since K and L are constructed as products' of sets of non-orthogonal vectors, their eigenvectors \/Rand \/L
are Hermitian and non-negative, hence their 'square roots' exist. They can be found via diagonalization:

E.g.: Ve = Wow' = (wB)T o)< x X (15)
P ' -
v, = wow' - (e’ s YTy 4sb)
Now divide one leg of each " by a 'square root": y ,
- Y y
Then  <e 4?\ > L*v‘* Y
e >/’ %] I ‘ fees, {4 “re B \/’f 1 = J' 1 (45)
K X Y Y-
[to cancel factors of X and Y when computing normalization in (14)]
~1 ~(
So, _‘_):_L_f{'_)l/_,_ might yield a properly normalized transfer matrix. Express MPS through such an object.
R Y X X' R Y X X'
Insert identities: A\ Y N X r Y A X r (1)
Define new /\ via SVD: — —
YAX=(AvT SvD SVD
boog ot TR ot a7
wu=1,Vv=4 Py w A X ey A X ”
Gather remaining TN - v g '
factors into f Y " A ~ -
r A L A (
¢ vty U . . PN ; s (1)
f } )
Claim: i F, /'\‘/{u[ S is in the desired 2-site canonical form. u.,. U {
Proof: Since W and Vf were obtained via SVD, they satisfy Ut v - T (20a)
) R ettt = (zb)
Hence WY AX (D + (3)n
A Vot oy e a gt VA (/m),"* v X

ik
rtx

werraki 4o
_ l }x _ :
h X+ T >//7§! - "li V= ‘}1

V X-q. rlf \I-I,‘, u—]- A.&?‘V V X-q. r'fAf V K-IJ‘- L
n yt AbxT

Thus, f'(‘: /‘6’1 satisfies (6b), as required!
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Similarly:

y A X
(ro0) — o —
XF $1§u/\"' +-l(ly~'u
’—»_(u) V X —)—0—)—0—))
\/f/\'fx‘l‘
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Thus, 10 A /@1 satisfies (6b), as required!

(Zo)



