
Faculty of Physics, Summer Term 2023

Numerical Quantum Physics

Lecturer: Dr. S. Paeckel

Assistant Lecturer: Z. Xie, B. Schneider

https://www2.physik.uni-muenchen.de/lehre/vorlesungen/sose_23/nqp/

Sheet 5: Supervised learning

Released: 06/27/23; Submit until: 07/10/23 (20 Points)

On this sheet we will implement a small neural network and use it for pattern recognition, a task
that can be used for instance to classify measurement data and detect phase transitions. However,
here we will use the back-propagation method to realize a version of an optimizer and apply it to
train a network to identify hand-written numbers. For that purpose, the training and test datasets
are obtained from the MNIST database (loading the data requires Python, so for this sheet it might
be the preferred programming language).

Problem 1 A neural network class (10 Points)

We aim to learn features from grayscale images that are represented by X ∈ V28×28
R matrices, fixing

the number of nodes on the input layer to NI = 282 = 784. The output layer should signal the
detected feature, i.e., which number between 0 and 9 is shown on the input image yielding NO = 10
output nodes. We then consider a single hidden layer which is represented by NH ∈ N nodes. The
input layer is connected to the hidden layer via a weight matrix A ∈ VNI×NH

R , the hidden layer is
connected to the output layer via a weight matrix B ∈ VNH×NO

R , and we use a sigmoid activation
function σ(x) = 1

1+e−x . A vectorized input signal x ∈ RN
I is then mapped to the output signal

y ∈ RN
O via an intermediate signal m ∈ RNH in the hidden layer, evaluating successively

mj = σ(

NI−1∑
i=0

Aijxi) , yk = σ(

NH−1∑
j=0

Bjkmj) .

(1.a) (6P) Write a neural network class which wraps the described architecture. It should implement
methods to update weight matrices A,B as well as a function that evaluates the output
signal y, given an input signal x. Using the evaluation function, implement a method that
computes for a given input x and an expected feature t ∈ [0, 9] the cost function

C(A,B) =
1

2
|y − t|2 ,

where t = 0.99et + 0.01
∑

t′ ̸=t et′ is the feature vector. Note that we avoided the choice of
a canonical unit vector et as feature vector. This will be usefull when training the network,
since exact 0’s and 1’s may cause the gradient optimization to fail. It may also be useful to
write two helper functions, which either propagate an input signal x up to a certain layer
or back-propagate an output signal y up to a certain layer and return the corresponding,
propagated signals.

(1.b) (4P) We want to train our neural network by minimizing the cost function with respect to
all parameters Aij, Bjk. For that purpose, we use a back-propagation scheme of the errors

1

https://www2.physik.uni-muenchen.de/lehre/vorlesungen/sose_23/nqp/

per layer with a fixed learning rate η > 0. In one training iteration, we update the parameters
by shifting them in the direction which minimizes the errors:

Bjk ←− [Bjk − η
∂C

∂Bjk

Aij ←− [Aij − η
∂C

∂Aij

, (1)

beginning at the output layer. The derivatives are evaluated using the chain rule. In order to
determine the weights of the nth weight matrix Mn, we then propagate the input signal x
from the input layer to the (n− 1)th layer yielding the propagated input mn−1, using the old
weight matrices. We furthermore propagate the target feature vector t as well as the output
vector y from the output layer to the (n+ 1)th layer yielding the back-propagated vectors
tn+1 and yn+1, using the updated weight matrices. The gradient in the nth layer Mn is then
given by

∂C

∂Mjk

= (tn+1
k − yn+1

k) · σ

(∑
j′

Mn
j′km

n−1
j′

)
·

(
1− σ

(∑
j′

Mn
j′km

n−1
j′

))
mn−1

j (2)

where the sums are over the input dimension of the nth weight matrix Mn. Write an update
method, which performs the back-propagation steps for each layer and replaces the weight
matrices. Try to reuse intermediate results to improve the performance.

Problem 2 Training and confusion (10 Points)

We now want to train our neural network, which means that we need a measure for the quality of
the predicted features. This can be provided by the confusion matrix K ∈ VNO×NO

N . The matrix
elements K(t, y) count the number of generated output features y (here we take as output feature
the output node with the highest weight in the output signal), given a certain expected target
feature t. Thus, on the main diagonal K contains the number of successfully predicted features,
while the off-diagonal elements keep track of false predictions.

(2.a) (3P) Write a method which continuously updates the confusion matrix when propagating
an input signal through your network. Furthermore write methods which compute the
total success-rates for each feature s =

∑
t K(t, t)/

∑
t,y K(t, y), as well as the so-called

precision rates per feature p(t) = K(t, t)/
∑

y K(t, y) and the recall rates per output
r(y) = K(y, y)/

∑
t K(t, y).

(2.a) (3P) Download the MNIST datasets from the lecture’s home directory:
/project/cip/2023-SS-NQP/mnist, you can load the data in python using numpy’s load
routine. These are grayscale images which have pixel values p(x, y) ∈ [0, 255]. Write a
method to rescale these values to lie in the interval [0.01, 0.99] to improve the stability of
the gradient evaluations during back propagation.

(2.c) (4P) Use a number of NH = 100 hidden nodes and a learning rate η = 0.1 to train your
neural network on the training datasets by randomly choosing NT images and use its target
feature to update the neural network weight matrices (you can initialize these matrices with
normally distributed numbers). For different values of NT , use all test datasets and evaluate
the confusion matrices and plot the success, precision and recall rates as function of NT .

2

	A neural network class (10 Points)
	Training and confusion (10 Points)

