Large Scale Numerics

Programming languages for HPC
&
Basic concepts of C+

Foundations Programming

Large Scale Numerics

Programming languages for HPC

Science of Computer Programming

Volume 205, 1 May 2021, 102609
ELSEVIER =

binary-trees

Ranking programming languages by energy
efficiency

Rui Pereira®® 9 =, Marco Couto =, Francisco Ribeiro ©° =, Rui Rua ® =,

Jdcome Cunha ©® i, Jodo Paulo Fernandes ¢ =, Jodo Saraiva ©° =

Show more

+ Add to Mendeley o« Share 33 Cite

https://doi.org/10.1016j.5cic0.2021.102609 » Get rights and content »

Benchmark of 27 programming languages using
computer benchmark language game

bundations

Energy Time Ratio Mb
(J) (ms) (J/ms)

(c) C 39.80 1125 0.035 131
(c) C++ 41.23 1129 0.037 132
() Rust {2 49.07 1263 0.039 180
(c) Fortran fty 69.82 2112 0.033 133
() Ada 4y 95.02 2822 0.034 197
() Ocaml L1 f2 100.74 3525 0.029 148
) Java 11 U6 111.84 3306 0.034 1120
) Lisp s U3 149.55 10570 0.014 373
() Racket 14 g 155.81 11261 0.014 467
(i) Hack T2 o 156.71 4497 0.035 502
™ C# L1 U 189.74 10797 0.018 427
o F#ls U 207.13 15637 0.013 432
(c) Pascal 3 15 214.64 16079 0.013 256
(c) Chapel 15 fra 237.29 7265 0.033 335
(v) Erlang 15 fi1 266.14 7327 0.036 433
(c) Haskell 12 {2 270.15 11582 0.023 494
@ Dart L1 1 290.27 17197 0.017 475
() JavaScript }2 4 | 312.14 21349 0.015 916
() TypeScript 2 {» | 315.10 21686 0.015 915
(&) Gots 13 636.71 16292 0.039 228
@) Jruby 12 {3 720.53 19276 0.037 1671
(i) Ruby 15 855.12 26634 0.032 482
() PHP i3 1,397.51 42316 0.033 786
(i) Python 15 1,793.46 45003 0.040 275
@ Lua 41 2,452.04 209217 0.012 1961
() Perl 11 3,542.20 96097 0.037 2148
(c) Swift n.e.

https://benchmarksgame-team.pages.debian.net/benchmarksgame/index.html

Large Scale Numerics

Programming languages for HPC

From a developer perspective f strong
o Classify according to type checking
e statically «» dynamically typed Julia Java
int i=31i=3 Pvth
o weakly <> strongly typed ython FORTRAN
int 1 = 3; string s = "a"; print i+s - —
o dynamic conversion possible if weakly typed dynamic static
C
C+
| weak

Foundations Programming Lan,

Large Scale Numerics

Programming languages for HPC

From a developer perspective
o Classify according to type checking

o statically <> dynamically typed
int i=31i=3

o weakly < strongly typed [Object] [Type]
int 1 = 3; string s = "a"; print i+s is | of

o dynamic conversion possible if weakly typed faust match

. . Type

@ Static type checking ki
o Protection from runtime errors

o No runtime type deduction — faster computation

. M iew:
o Example: Precomputed result-types in tensor calculus Stack/Memory view

‘ 00 00 0O Ol’ Address of 1

‘ 00 03 FF FF’ Value

Foundations Programming L.

Large Scale Numerics

Programming languages for HPC

From a developer perspective

o Classify according to type checking Eme_]
o statically <> dynamically typed define
int i=31i=3
o weakly < strongly typed Object
int 1 = 3; string s = "a"; print i+s is | of
o dynamic conversion possible if weakly typed

@ Static type checking [E

o Protection from runtime errors
o No runtime type deduction — faster computation

. M iew:
o Example: Precomputed result-types in tensor calculus Stack/Memory view

@ Dynamic type checking requires RunTime Type ‘ 00 00 00 01 ’ Address of i
Information (RTTI)
o No compilation step, type deduction at runtime ‘ 00 03 FF FF --- ’ Value?

o Dynamic dispatchment, late binding, ...

Foundations Programming L.

Large Scale Numerics

Programming languages for HPC

Which language to learn? Let’s formulate some criteria:
@ General purpose language (no domain specific langauge)
@ Need to produce highly efficient and portable programs
@ Large software/library ecosystem
(]

Large supportive community maintaining language (so that it’s unlikely it may vanish in the
near future)

@ Good starting point to learn further languages

Foundations Programming

Large Scale Numerics

Programming languages for HPC

Which language to learn? Let’s formulate some criteria:
@ General purpose language (no domain specific langauge)
@ Need to produce highly efficient and portable programs
@ Large software/library ecosystem
(]

Large supportive community maintaining language (so that it’s unlikely it may vanish in the
near future)

@ Good starting point to learn further languages

@ Python or C+ are ideal candidates

o C+ — Python easier than Python — C#

= Let’s begin with C+!

Examples: /project/cip/2023-SS-NQP/shared/example/cpp/lecture

Foundations Programming

Large Scale Numerics

C+: Basic concepts

Fundamental types
@ void/nullptr_t: no valid type/invalid pointer type
@ bool: 1 Bit representing boolean True/False
@ char et al.: ASCII characters (or more for unicode support: wchar_t, charl6_t, ...)

@ signed/unsigned int et al.: Integer number with different ranges (short, int,
long, long long), signed is default

@ float et al.: Floating point number with single (f1loat, 32 Bit), double (double, 64
Bit) or extended (Long double, 80 Bit) precision

Foundations

Programming

Large Scale Numerics

C+: Basic concepts

Fundamental types
@ void/nullptr_t: no valid type/invalid pointer type
@ bool: 1 Bit representing boolean True/False
@ char et al.: ASCII characters (or more for unicode support: wchar_t, charl6_t, ...)

@ signed/unsigned int et al.: Integer number with different ranges (short, int,
long, long long), signed is default

@ float et al.: Floating point number with single (f1loat, 32 Bit), double (double, 64
Bit) or extended (Long double, 80 Bit) precision

Pointers/References
@ For each type T there is a pointer type T+ (can be nullptr)
@ For each type T there is a reference type T& (must point to valid memory)

@ For each type T there is a rvalue type T&& (only represents intermediate values or literals)

Foundations

Programming

Large Scale Numerics

C+: Basic concepts

The holy trinity of Const’ness:

// value of i may change later
int i = 3;

// p is a constant pointer to an integer , the memory block p points to can’t be
changed via p

const intx p = &i;

// p is a constant pointer to a non—constant integer , the memory block p points to
can be changed via p

intx const p = &i;

// p is a constant pointer to a constant memory block, neither p can be changed,
nor the memory block via p
const intx const p = &i;

Note: Read const-definitions from right to left!

Foundations

Programmin

Large Scale Numerics

C+: Basic concepts

Operators: Unary, Binary and Ternary

@ Unary, for instance /1l %nt 1% signed 32bit.integer!
. . . // int i=0 then means i=0x0000FFFF
o Arithmetic operation: +=, —=, %=, /=, ++, —— ;¢ i=0, j; j=(++i); // now j=I
o Logical operations: !, != int i=0, j; j~=i; // now j=—-65536

o Bitwise operations: ~, ~=

@ Binary, for instance

o Arithmetic operation: +, —, x, /, % - - —— -

o Logical operations: &, | int }zlo’.J’.El%?” /1 now =l
Lo . . int i=7, j; j=i&2; // now j=2

o Bitwise operations: &, |,

o Stream operations: «, »

@ Ternary:
<condition>?<exprl>:<exprz>

o Execute exprl if condition evaluates to ;f=1t(11>0)1(; le (i<0)? —=1: 0; // implements
True sgn ()

o Execute expr2 if condition evaluates to
False

Foundations

Large Scale Numerics

C+: Basic concepts
Functions and Routines main function:
@ General syntax of routines:

o Return type or void]
o Routine identifier © Must return int
o Routine parameter

int main(int argc, charsx argv[]);

@ Must take one int parameter and one pointer to char-array

#include <iostream >

int arithmetic_sum (const int& _1, const int& _u) {
int result = 0;

for(int i = _1; i <= _u; i++) { result += i; }
return result;

}

void output_arithmetic_sequence(const int& _l, const int& _u) {

std ::cout << "sum " << _1 << " to " << _u << ": " << arithmetic_sum(_l, _u) << std::endl;
}

Foundations

Large Scale Numerics

C+: Basic concepts

Flexible, static typing: Templates

e function templates provide automatic specializations of functions acting on different
types T

#include <iostream >

template <typename T>
void print_sum(const T& _lhs , const T& _rhs) {

std :: cout << _lhs << "+" << _rhs << "=" << (_lhs + _rhs) << std::endl;
1

@ class templates provide automatic specializations of different class types

template <typename T>
struct Complex { T real; T imag; };

Foundations

Programmin

Large Scale Numerics

C+: Basic concepts

Template specializations allow for compact type-dependent declarations

template <typename T> struct Complex; // forward declaration

template <typename T> struct Typelnfo { typedef T BaseType; };

template <> struct Typelnfo<Complex<float>> { typedef float BaseType; };
template <> struct Typelnfo<Complex<double>> { typedef double BaseType; };

Now we can define generalized norm function

#include <cmath>

template <typename T>
typename Typelnfo<Complex<T>>::BaseType norm(const Complex<T>& _value) {
return std::sqrt((_value.real#_value.real)+(_value.imags*_value.imag));

}

This can be generalized even further introducing a function template

template <typename X>
typename Typelnfo<X>::BaseType norm(const X& _value);

Foundations Programmin

Large Scale Numerics

C+: Basic concepts
Operator overloading for convenient arithmetics

@ Unary operators:

template <typename T>
struct Complex {
T real;
T imag;
Complex<T>& operator+=(const Complex<T>& _rhs) {
this —>real += _rhs.real; this->imag += _rhs.imag;
return *this;
} // implements z1 += z2; for Complex<T> zl,z2;

@ Binary operators:

template <typename T>

Complex<T> operator+(const Complex<T>& _lhs, const Complex<T>& _rhs) {
Complex<T> result(_lhs); result += _rhs;
return result;

} // implements z3 = zl + z2; for Complex<T> zl,z2,z3;

Foundations Programmin

Large Scale Numerics

C++: Basic concepts

The auto keyword: Automatic type deduction

@ Quite often the type of a variable can be inered from the interpreter, e.eg.:
o In case of literals: 1 = 10,1 =1.0
o In case of return types of functions: z = foo ()

auto i = lu; // defines i as unsigned int
auto j = -2; // defines j as signed int
auto f = 1.0/j; // defines f as double

@ This is very helpful since in particular templates can render types rather confusing

@ Also simplifies loops via ranged based accessors:

std :: vector<T> 1list (10); // a 10-element vector of doubles
for(auto& el : list) {
el = 2.0; // el is a reference so we fill vector with 2.0

}

Foundations

Programmin

Large Scale Numerics

C++: Basic concepts
Lambda expressions for in-place functor definitions
o In some situations objects representing functions (functors) are necessary

@ Lambda expressions allow for compact definition of functors

auto cmp = [](const Complex<T> _lhs, const Complex<T>& _rhs)->bool ({
return norm(_lhs) < norm(_rhs);

}s

@ Functor cmp implements binary operator performing weak comparison and can be passed
as argument to other functions

#include <algorithm >

template <typename T>

void weak_sort(std:: vector <Complex<T>& _list) {
std ::sort(_list.begin(), _list.end(), cmp);

e

Foundations

Programmin

Large Scale Numerics

C++: File types and compilation

How do we convert source code into actual pro-

Preprocessor

grams? -

@ Source code files

o Source files with file ending *.cpp provide the
implementation of our programm

o Declarations can be outsourced into header files
with file endings *.h or *.hh

Foundations Programming L.

Large Scale Numerics

C++: File types and compilation

How do we convert source code into actual pro-
grams?
@ Source code files
o Source files with file ending *.cpp provide the
implementation of our programm

o Declarations can be outsourced into header files
with file endings *.h or *.hh

@ Object files with file endings *.0 or *.obj
contain compiled implementations in binary
form

Preprocessor

Compiler

main.o

Foundations

Programming L.

Large Scale Numerics

C++: File types and compilation

How do we convert source code into actual pro-

grams ? - Preprocessor

@ Source code files
o Source files with file ending *.cpp provide the
implementation of our programm Compiler
o Declarations can be outsourced into header files
with file endings *.h or *.hh

@ Object files with file endings *.0 or *.0bj C maino]
contain compiled implementations in binary
form

@ Shared libraries files with file endings *.so or

*.a are a collection of compiled objects (library)
ibgec.a,. . .

Programming L.

Foundations

Large Scale Numerics

C++: File types and compilation

How do we convert source code into actual pro-
P

grams ? - TEProcessor

@ Source code files
o Source files with file ending *.cpp provide the
implementation of our programm Compiler
o Declarations can be outsourced into header files
with file endings *.h or *.hh

o Object files with file endings *.0 or *.0bj E‘E
contain compiled implementations in binary
form Linker

@ Shared libraries files with file endings *.so or

*.a are a collection of compiled objects (library) Linker -

@ Binary executables (typically no file-ending or
*,exe) are programs that can be run by the
operating system

Programming L

Foundations

Large Scale Numerics

C+: File types and compilation

@ Preprocessor: Replace #include <*> statements with actual file contents
@ Compiler: Create * .o file from preprocessed source file

@ Both typically provided by compiler g++ and executed in single call specifying —c option

1~/2023-55-N0P/shared/example/cpp/lecture/type_deduction$ /usr/bin/g++ -Wall -Wextra -Wpedantic -g3 -00 -I./ —-c main.cpp -0 build/Debug/main
.0

:~/2023-5S-NQP/shared/example/cpp/lecture/type_deduction$ 11 build/Debug/
total 1
—rw-rw--—+ 1 sebastian.paeckel ls-schollwoeck 254008 Apr 19 21:03 main.o

Foundations

Large Scale Numerics

C++: File types and compilation

@ Preprocessor: Replace #include <> statements with actual file contents
@ Compiler: Create * .o file from preprocessed source file
@ Both typically provided by compiler g++ and executed in single call specifying —c option

1~/2023-55-NOP/shared/example/cpp/lecture/type_deduction$ /usr/bin/g++ -Wall -Wextra -Wpedantic -g3 -00 -I./ -c main.cpp -0 build/Debug/main

.0
1~/2023-55-NQP/shared/example/cpp/lecture/type_deduction$ 11 build/Debug/

total 1
—rw-rw-——+ 1 sebastian.paeckel ls-schollwoeck 254008 Apr 19 21:03 main.o

o Linker: Link external libraries and object file into binary executable

o Typically provided by compiler g++ and executed specifying —o option
- 1+/2023-55-N0P/shared/exanple/cpp/lecture/type_deduction$ /usr/bin/g++ —Wall —Wextra —Wpedantic -g3 0@ -I./ build/Debug/main.o —o build/Deb

ug/main
:~/2023-55-NQP/shared/example/cpp/lecture/type_deduction$ 11 build/Debug/

total 1
—rwxrwx—Xx+ 1 sebastian.paeckel ls-schollwoeck 144864 Apr 19 21:06
—rw-rw-——-+ 1 sebastian.paeckel ls-schollwoeck 254008 Apr 19 21:05 main.o

@ Use —I option to add directories to search path
@ Use —W option to add directories to configure shown compiler warnings

e Use —g, -0, ... options to configure compiler optimization

Foundations

Large Scale Numerics

C++: Project structure

@ Preprocessor expands all #include directives
recursively — large projects then generate large
compiled code files

o Implemented functionality is often used in
different contexts, independently

As a consequence, structure project by functionality

car.cpp

Foundations Programming L.

Large Scale Numerics

C++: Project structure

) . . engine.h material.h
@ Preprocessor expands all #include directives engine.cpp material.cpp

recursively — large projects then generate large
compiled code files

o Implemented functionality is often used in chassis.h
different contexts, independently

chassis.cpp

As a consequence, structure project by functionality

. . I :
@ Avoid too many nested #include statements concpp —>

o Implement independent functionalities in
independent * . cpp files with associated

headers . h (always pairwise) colorh
color.cpp

@ Executables (main-functions) should only serve

as user front end -

Foundations Programmin;

Large Scale Numerics

C++: Project structure

) . . engine.h material.h
@ Preprocessor expands all #include directives engine.cpp material.cpp -
recursively — large projects then generate large
compiled code files
o Implemented functionality is often used in Cﬁ:::zsc;p chassis.o J—
different contexts, independently
As a consequence, structure project by functionality
@ Avoid too many nested #include statements C:izgp —{ main.cpp
o Implement independent functionalities in
independent * . cpp files with associated
1Irwi color.h
headers . h (always pairwise) oty { coloro]
@ Executables (main-functions) should only serve —_

as user front end [- ;:
main

Programmin

Foundations

Large Scale Numerics

C++: Compiling complex programs using make

@ Make is a tool that executes
(file-)operations based on dependencies

@ Make establishes rules for targets (files that
should be build) that need to fulfill certain
dependencies

o If dependencies are missing or outdated,
Make searches for rules to build them

o Compilation and linking chains are handled
automatically
General syntax for a rule:
target: <dependencyl> <dependency2> ...

shell command that builds target from
dependencies

Foundations

define compiler variable
CC = /usr/bin/g++

define compiler flags
CPPFLAGS = -Wall -Wextra —Wpedantic —g3 -00

define depending objects
OBJS = color.o material.o engine.o chassis.o car.o

define linker flags
LDFLAGS =

include external definitions
include make.inc

define rule for binary
main: main.o $ (OBJS$
$(CC) $ (CPPFLAGS) $” -0 $Q@ $ (LDFLAGS)

define rule for object files
o:

% .Ccpp
$(CC) $(CPPFLAGS) —c $” —o $@

o
S .

Large Scale Numerics

Object-Oriented Programming (OOP): Structuring complex code in C+

Parent: W depends

o Relationships between data structures: |

o Inclusive: Inheritance derive

D dent: Attributes of certain t \ ¥ Y
) cependen riputes ol certain types Child- [Diesel] [Otfo] [Tet]

@ OOP: Organize code around contained
data, not functionality

Parent: material '— depends —>| chassis
|
derive
¥ N7 ¥
Child: [steel] [aluminum] [carbon]

Foundations Programming L.

Large Scale Numerics

Object-Oriented Programming (OOP): Structuring complex code in C+

Parent: W depends

o Relationships between data structures: |

o Inclusive: Inheritance derive

D dent: Attributes of certain t \ ¥ Y
) cependen riputes ol certain types Child- [Diesel] [Otfo] [Tet]

@ OOP: Organize code around contained
data, not functionality

@ Derived classes extend/specialize data

Parent: material '— depends —>| chassis
|
derive
¥ N7 ¥
Child: [steel] [aluminum] [carbon]

Foundations Programming L.

Large Scale Numerics

Object-Oriented Programming (OOP): Structuring complex code in C+

Parent: W depends

Relationships between data structures: |

o Inclusive: Inheritance derive

D dent: Attributes of certain t \ ¥ Y
) cependen riputes ol certain types Child- [Diesel] [Otfo] [Tet]

OOP: Organize code around contained
data, not functionality

@ Derived classes extend/specialize data
. . ent: ateri d ds — Assis
@ Car: Inherit from chassis Far I”"' (material_}— depends chassis]
o Engine-type: Otto, Diesel derive
o Material-type: Steel, aluminum, carbon ¥ ¥ k4

Child: [steel][aluminum][carbon]

Plane: Inherit from chassis

o Engine-type: Diesel, Jet
o Material-type: Aluminum, carbon

Foundations Programming L.

Large Scale Numerics

OOP in C+

class Engine ({
private: // not visible in derived classes, not accessible from instance
unsigned int serial_id;

protected: // visible in derived classes, not accessible from instance
std:: string fuel;

public: // visible in derived classes, accessible from instance
unsigned int next_maintenance;

Engine(const unsigned int& _serial_id) // construtor
serial_id (_serial_id) {}; // init default values

const std::string& get_fuel() const { return this—->fuel; }

e
class Diesel : public Engine { // maintain visibility of parent class attributes
public:
Diesel (const unsigned int& _serial_id) // override constructor
Engine(_serial_id) { this—>fuel = "Diesel"; this ->next_maintenance = 2%365 };
HE

Foundations

