
TMP-TC2: Cosmology

Solutions to Problem Set 9 27, & 29 June 2023

1. Fourth neutrino

1. When the reaction rate of the neutrino Γ is comparable to Hubble parameter
H the neutrino stops interacting

Γ(T ∗) ∼ H(T ∗) , (1)

where T ∗ is the temperature of decoupling. The rate of the reaction can
be approximated by Γ ∼ nν4〈σv〉. The number density that appears in the
relationship Γ ∼ n〈σv〉 is the density of target particles. It is assumed that the
most important reaction to keep the new neutrinos ν4 at thermal equilibrium
is the annihilation of neutrino with its own antiparticle. We would then put
nν̄4 . But it is also assumed that there is no asymmetry between neutrinos and
antineutrinos, so nν̄4 = nν4 .

The Hubble parameter during the domination of radiation can be expressed
as H = 1.66

√
g∗(T ) T 2

Mpl
, so the relationship (1) becomes

nν4(T
∗)〈σv〉 =

√
g∗(T )

T ∗2

M̃
, (2)

where we defined the constant M̃ = Mpl/1.66.

2. The constraint to be imposed is, that the present additional energy density
of the neutrino ν4 must not exceed the density of dark matter

ρν4 = 2mν4nν4(T0) ≤ Ωdmρ
0
crit . (3)

The equality is satisfied if all the dark matter is given by neutrinos ν4.
Once the neutrino interacts not anymore, the number of neutrinos per co-
moving volume remains constant nν4R

3 = const. In addition, we know that
the total entropy per comoving volume is conserved, i.e. sR3 = const. By
combining the two conservation laws we can express the density of neutrinos
today as

nν4(T0) = nν4(T
∗)
s(T0)

s(T ∗)
= nν4(T

∗)
g∗(T0)

g∗(T ∗)

(
T0

T ∗

)3

. (4)

Using this relationship we can write (3) like

2mν4nν4(T
∗)
g∗(T0)

g∗(T ∗)

(
T0

T ∗

)3

≤ Ωdmρ
0
crit . (5)
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The combination of relations (2) and (5) allows us to determine the tempera-
ture of decoupling and the limits on the mass of ν4. We will be interested in
two limiting cases. The neutrino is light and decouples while still relativistic,
or it is very heavy and it is already non-relativistic at decoupling.

3. light neutrino ν4

If the neutrino ν4 is relativistic at the time of decoupling, the density at T ∗

is given by

nν4(T
∗) =

3ζ(3)

4π2
T ∗3 .

The thermal average of the product of the cross section and the relative
velocity is

〈σv〉 ∼ G2
FT
∗2 .

With these two relations, (2) gives us the decoupling temperature

T ∗ =

(
4π2
√
g∗(T )

3ζ(3)G2
FM̃

) 1
3

' 2 (g∗(T ))1/6MeV . (6)

We know that g∗(T ) is approximately 100 when all species of standard model
are relativistic and about 2 when there is only photons and massless neutri-
nos.(cf. figure 1) For these values, (g∗(T ))1/6 is of the order of 1. Our estimate
of T ∗ is then

T ∗ ' 2MeV . (7)

At this temperature, the relativistic species are γ, νe, νµ, ντ , ν4, e+, e−. We
then get

g∗(T ∗) = 2 +
7

8
(4 + 6 + 2) . (8)

At the present time, the only particles that are still relativistic are photons
and massless (standard) neutrinos, so

g∗(T0) = 2 +
7

8
(6)

(
Tν
T0

)3

= 2 +
7

8
(6)

4

11
. (9)

We substitute (8) and (9) in (5) and solve for mν4 to find

mν4 ≤
2π2

3ζ(3)

g∗(T ∗)

g∗(T0)

Ωdmρ
0
crit

T 3
0

' 17eV . (10)

4. heavy neutrino ν4

If the new neutrino is non-relativistic when decoupling, the density is given
by

nν4(T
∗) =

(
mνT

2π

)3/2

exp
(
−mν

T

)
. (11)

We can already see that in this case a larger mass corresponds to a smaller
density. We therefore expect to find a lower limit for the new neutrino mass.
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Figure 1 – g∗(T )

The thermal average product of the cross section and the relative velocity is
now

〈σv〉 ∼ G2
Fm

2
ν .

This result is not entirely trivial. One might expect the presence of a factor
(T/mν)

n. A detailed calculation shows that for the case of a Dirac neutrino,
the dominant contribution is independent of T . The relations (2) and (5) then
become

m7/2
ν4
T ∗−1/2 exp(−mν4/T

∗) =
(2π)3/2

√
g∗(T ∗)

G2
FM̃

≡ a (12)

m5/2
ν4
T ∗−3/2 exp(−mν4/T

∗) =
(2π)3/2Ωdmρ

0
crit

2T 3
0

g∗(T ∗)

g∗(T0)
≡ b , (13)

where the inequality was replaced by an equality to simplify the calculations.
Unfortunately we can not find an analytic solution to the above equations.
We will proceed in the same way as in the previous exercise. We start by
making the change of variables x = 1

2

mν4
T ∗ . The equations become

(2x)1/2m3
ν4

exp(−2x) = a (14)

(2x)3/2mν4 exp(−2x) = b . (15)

We can eliminate mν4 to find an equation for x

ex

x
=

(
16a

b3

)1/4

≡ K . (16)

By taking the logarithm, we obtain

x− lnx = lnK . (17)
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By assumption we have x� 1. We will try to solve the equation by iterations.
As ln x < x, we can neglect the logarithm to find a first approximation

x0 = lnK . (18)

To find the solution, we reinsert x0 in the equation

x ' x1 = lnK + lnx0 = ln(K lnK) . (19)

By inserting x1 in the second equation we obtain

T ∗ ' be2x1

(2x1)5/2
. (20)

As before, we must analyze the dependence of T ∗ on g∗(T ∗). In this case the
result is more sensitive to the value of g∗. But as we are only interested in
orders of magnitude, we will keep it simple. You can insert different values for
g∗ and compare the result with the figure1. For g∗ = 20 we get T ∗ ' 419MeV,
which is not far from the right result. We can then find the limit on the mass
mν4

mν4 = 2x1T
∗ ≥ 10GeV (21)

2. Baryon Asymmetry of the Universe
The number of anti-protons changes due to annihilation with protons and proton-
anti-proton pair creation. These processes contribute to the Boltzmann equation.
As we already discussed in the previous exercise, decoupling happens when the
expansion term and the reaction term in the Boltzmann equation are of same order :

H(Td) ∼ Γ(Td) (22)

The reaction rate is given by

Γ = 〈σv〉n (23)

where n is the density of the target particles. Therefore, for anti-protons the targets
are the protons. From sheet 5 we know that the Hubble parameter is

H ≈ 1.65
√
g∗
T 2

Mpl

(24)

In the following we will ignore any prefactors, because at the end we want to get
just order of magnitudes. Hence, we have H ∼ T 2

Mpl
, n = ηnγ and 〈σv〉 ∼ λ2

p with λp
the Compton wavelength of a proton.
Decoulpling happens at

T 2
d

Mpl

∼ ηλ2
pT

3
d (25)
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This gives a decoupling temperature

Td ∼
1

Mplηλ2
p

∼ 0.02eV (26)

Assuming that the processes are in equilibrium at decoupling to obtain an order of
magnitude for the particle density of the anti-protons :

neq = 2

(
mT

2π

) 3
2

e−
m−µ
T (27)

n̄eq = 2

(
mT

2π

) 3
2

e−
m+µ
T (28)

(29)

The product is

neqn̄eq ∼ (mT )3e−
2m
T (30)

with neq = ηnγ ∼ ηT 3 we obtain for the particle density of the anti-protons

n̄eq ∼ m3

η
e−

2m
T ∼ e−1011 (31)

This number is so small that we can say that the universe contains practically no
anti-protons.

3. Recombination

The Saha’s equilibrium formula reads

nH = nenp

(
meT

2π

)−3/2

eI/T , (32)

where I = mp +me −mH = 13.6 eV is the binding energy of the hydrogen atom.

To get this formula, we start from the equilibrium distributions for non relati-
vistic species

neq
i = gi

(
miT

2π

)3/2

exp

(
µi −mi

T

)
(33)

and we consider the ratio
nH
npne

(34)

Since we are at equilibrium and photons have zero chemical potential µp +µe = µH ,
and the Saha equlibrium condition follows.
For an electrically neutral plasma, ne = np, so we obtain

nH = n2
p

(
meT

2π

)−3/2

eI/T . (35)
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where we used gp = ge = 2 and gH = 4 (1 triplet and 1 singlet). Denoting with
x ≡ np

nB
, where nB = np + nH is the number of baryons, we can write the above as

1− x
x2

= nB

(
meT

2π

)−3/2

eI/T = ηnγ

(
meT

2π

)−3/2

eI/T , (36)

where
η ≡ nB

nγ
≈ 10−10 , (37)

and

nγ =
2ζ(3)

π2
T 3 . (38)

Therefore
1− x
x2

=
2ζ(3)√
π
η

(
2T

me

)3/2

eI/T , (39)

and as a result, the temperature at a first approximation is given by

T ≈ I

log
[(

1−x
x2

) √
π

2ζ(3)
η−1
] ≈ 0.6 eV. (40)

A more careful calculation shows that the temperature is even lower

T ≈ 0.3 eV ,

which is much smaller than the value one might expect T ≈ I. This is due to the
smallness of the η parameter, i.e. the fact that there is an over-abundance of photons
for each hydrogen atom.
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