
TMP-TC2: Cosmology

Solutions to Problem Set 10 27, 28, 29 June 2023

1 Flatness Problem
Using the given equation Ω− 1 = k

R2H2 we can find for an arbitrary time t :

|Ω(t)− 1| = R2
0H

2
0

R(t)2H(t)2
|Ω0 − 1| (1)

With R(t) ∝ tn (n = 1
2

for radiation domination and n = 2
3

for matter domination)
we get

|Ω(t)− 1| =
(
t

t0

)2(1−n)

|Ω0 − 1| (2)

Inserting the time of recombination tR ≈ 3.7 · 105 years, we obtain

|Ω(tR)− 1| ≈ O(10−8 − 10−9) (3)

It seems that this number is very fine-tuned and surprisingly close to the value zero
corresponding to a flat universe. But why ? This is the flatness problem.

2 Horizon Problem

Let us assume that at one point in the past, a signal was emitted. Then the proper
distance between the observer and the source is given at time t0 by

d(t0) = R(t0)

∫ t0

te

1

R(t)
dt (4)

If te is the time of the emission of the CMB and t0 is the age of the universe today,
then d describes the distance between us and the CMB.
The size of the causally connected region at te is

D(t0) = R(t0)

∫ te

0

1

R(t)
dt (5)

Then the angle that contains one causally connected region in the sky is

θ = 2 arctan

(
1

2

D(t0)

d(t0)

)
(6)

For a matter dominated universe we have R(t) ∝ t
2
3 . Therefore, we obtain for D

and d

D(t0) = 3t
2
3
0 t

1
3
e (7)

d(t0) = 3t
2
3
0 (t

1
3
0 − t

1
3
e ) (8)
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With 1 + z = R(t0)
R(te)

=
(
t0
te

) 2
3

we obtain for the angle

θ = 2 arctan

(
1

2

1√
1 + z − 1

)
(9)

With z ≈ 1500, we get the angle θ ≈ 1.52◦.
The problem with this small angle is that in the CMB are many causally disconnec-
ted patches. However, the CMB is very isotropic. How can this be ? One solution to
this is for example inflation. We will discuss this on the next sheet.

3 Phase Transitions and Bubble Nucleation

1. Above the critical temperature the potential has exactly one minimum at
φ = 0. So the vacuum expectation value of the whole space is zero which
means that there is a non-broken Z2 symmetry φ 7→ −φ everywhere. As soon
as the temperature decreases to a value below the critical temperature, the
potential obtains two minima. Now each causally disconnected region has to
choose one of these two vacuum expectation values. Hence, the Z2 symmetry
is broken.
During this phase transition, it can happen that domain walls appear. We
will analyze them for another potential below.

2. The behaviour of the potential is plotted in the figure 1. We can observe
that there is only one minimum for very high temperatures. With decreasing
temperatures, there appear additional minima for |φ| 6= 0. First, these new
minima are above the level of the minimum at zero, but below a certain
critical temperature, these new minima become to be at a lower level. At the
time around the critical temperature, the phase transition happens.

3. The static field equation is

d2φ

dx2
− ∂V

∂φ
= 0 (10)

Multiplying this equation with dφ
dx

and applying the chain rule gives

d2φ

dx2
dφ

dx
=
∂V

∂φ

dφ

dx

1

2

d

dx

((
dφ

dx

)2
)

=
dV

dx

Integrating this equation and assuming that the potential vanishes for x→∞
yields the Bogomolny equation

φ′(x) = ±
√

2V (φ) (11)
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Figure 1 – Coleman-Weinberg potential for different temperatures

Now we can insert the potential and integrate

x =

∫
dφ

1√
2λ(φ2 − v2)φ

=
1√

2λv2

(
− lnφ+

1

2
ln
(
φ2 − v2

))
+ const

Solving this for φ gives

φ(x) =
±v√

1− e2
√
2λv2(x−x0)

(12)

This is the domain wall solution that separates two regions with different
vacuum expectation values. Here we have the symmetric region for φ = 0
and the non-symmetric region for φ = ±v.
Similarly one can find

φ(x) =
±v√

1− e−2
√
2λv2(x−x0)

(13)

The solutions are plotted in figure 2.
The energy can be calculated as follows
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Figure 2 – Domain wall solutions for the φ6 model.

E =

∫ ∞
−∞

dx(
1

2
φ′2 + V )

=

∫ ∞
−∞

dx2V

=

∫ 0

±v

1

φ′
dφ2V

=

∫ 0

±v
dφ
√

2V

=

∫ 0

±v
dφ
√

2λφ(φ2 − v2)

=

√
2λv4

4

4. The energy of a domain wall at the initial time is given by

E0 = σDW2πR0 (14)

Through the tension of the DW, this bubble is not stable at will collapse. So
in general we write the energy for a collapsing bubble configuration to be

E = γ(t)σDW2πR(t) (15)

where gamma is the Lorentz factor. Since energy is conserved we have E = E0

and so we obtain the equation

R0 = γ(t)R(t) (16)
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Inserting gamma gives

1− (
dR

dt
)2 = (

R

R0

)2 (17)

The solutions to this equation are given by

R(t) = R0 cos

(
t

R0

)
(18)

Hence, we can see that a DW bubble will collapse in this scenario.

5. We can add a term proportional to φ2 such that the minimum at φ = 0 of the
φ6 potential gets raised. This means that energetically the broken vacuum is
preferred. This leads to pressure on the DW bubble such that it can grow if
this pressure is stronger than the tension of the bubble. Therefore, above a
critical size, such a bubble will always grow.

6. At some point when the bubbles expand they will collide with each other. At
these collisions, a lot of gravitational waves get emitted. This can have a lot
of implications on the cosmic microwave background.
Furthermore, besides domain walls, there are also other types of topological
defects that can form. These are for example magnetic monopoles or cosmic
string. During the interaction between all these defects, a lot of radiation
(gravitational and electromagnetic) can be produced which may again have
implications for the CMB.

4 Magnetic Monopole Problem

The energy density of monopoles today is given by

ε0M = mMn
0
M , (19)

with mM ' 1017 GeV and n0
M the number density of monopoles today.

No annihilation or creation of monopoles took place, therefore,

n0
M = nMR

3 = nM

(
T0
TGUT

)3

, (20)

where nM is their number density at TGUT. Since there is one monopole per Hubble
patch,

nM =
1

r3H
=

(
T 2
GUT

MPl

)3

. (21)

From the above it is easy to see that

n0
M =

(
TGUT

MPl

)3

T 3
0 , (22)

which in turn results into

ε0M = mM

(
TGUT

MPl

)3

T 3
0 ∼ 10−14

g

cm3
. (23)
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This energy density is 16 orders of magnitude bigger than the critical energy
density εc ∼ 10−30 g

cm3 , so it is in complete disagreement with observations of our
Universe today. This problem is called the magnetic monopole problem.
On the next sheet, we will introduce inflation, which would solve the problem, be-
cause through an extreme expansion of the universe, the density of magnetic mo-
nopoles would decrease to appropriate levels. Besides inflation, there are also other
solutions to this problem. If you are interested in it you can have a look on the Lan-
gacker Pi mechanism, symmetry non-restoration or the monopole erasure by domain
wall collisions.
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