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Problem 1 Hubbard-Stratonovich decoupling of the Coulomb interaction - part 1

Here we consider electrons in three dimensions with mass m and Coulomb interactions
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The goal is to perform a Hubbard-Stratonovich decoupling and show that the system can be
described by the path integral:
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(2.a) Formulate the path integral for Z starting from Eq. ([I)).
(2.b) Express the Coulomb interaction in Fourier modes by writing
d3q 1q-x
pla) = [ s o e ©)
and calculating V' (q).

(2.c) Add the auxiliary white-noise variable ¢, = igz;q — integrated over the imaginary axis, i.e.
ffooo d¢q in the path integral — with the contribution to the action:

Zy = /DW] exp {— /0,3 dT/% {—%6oq2¢q¢—qH (4)

Show that Z, is convergent.

(2.d) Before we apply the Hubbard-Stratonovich decoupling, consider a general repulsive interaction
2
Hine = 52, A? with g > 0 and show that it can be replaced by > <<ijj - %) when
adding the Hubbard-Stratonovich white-noise field ¢; = ip; 4 igA,;.

(2.¢) Continue from (2.c) and apply the technique from (2.d) to derive the path-integral in Eq. (2).
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Problem 2 Feynman diagrams 1: interacting electron gas

In this problem we use the linked-cluster theorem to expand the ground state energy FEj of an
interacting electron gas to first order:

Ey = iV¥{linked-cluster diagrams in momentum space} (5)

(2.a) Consider an interaction V'(q) independent of spin, and derive all first-order Feynman diagrams
contributing to the linked-cluster expression for the ground state energy.

(2.b) Calculate these so-called Hartree-Fock diagrams, which consist of direct and exchange terms.

(2.c) In real-space, the first-order perturbative result for Ej can be written
1
Ey = 5 Z/d3md3y V(e —vy) Coor(x — y). (6)

Write out the corresponding real-space Feynman diagrams for Ej; next derive and calculate
Feynman diagrams for the real-space correlations Cyor (z — y).

Problem 3 Feynman diagrams 2: large-N limit

In this problem we learn a powerful approximation technique to drop certain types of diagrams.
The basic idea is to consider a system with N = 25 + 1 spin components and consider the limit
N — oo where certain classes diagrams vanish. Neglecting the same diagrams even for small values
of N (down to N = 2) usually yields a systematic simplification of a given theory.

(2.a) Consider interacting fermions with N = 25 + 1 spin-degeneracy and interaction strength

Vig) = %U(q). Draw the Feynman diagrams expansion for the ground state energy and

identify leading and sub-leading terms in the 1/N expansion.

(2.b) Discuss which classes of diagrams in the linked-cluster expansion of the ground state energy
vanish.

(2.c) NxD(q) = (6p(q)dp(—q))o is the susceptibility of the non-interacting Fermi gas. Draw
the corresponding diagrams for the polarization bubble x(¢), up to order 1/N and where

q=(q,v).

(2.d) Derive the self-energy of the system in the large- IV limit and extract an effective interaction
between the fermions in the large-N limit.
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