FAKULTAT FUR PHYSIK IM SOSE 2023
TMP - TA3: CONDENSED MATTER MANY-BODY-PHYSICS
LUDWIG- AND FIELD THEORY I

MAXIMILIANSH
LIVIU UNIVERSITAT ]?OZENT: PROF. DR. FABIAN GRUSDT
MUNCHEN UBUNGEN: MATTIA MORODER

https://www2.physik.uni-muenchen.de/lehre/vorlesungen/sose_23/TMP-TA3/index.html

Sheet 9:
Hand-out: Friday, Jun 23, 2023

Problem 1 Quantum-Classical mapping: XY model

In this problem we consider the 1D quantum XY model, which can be described by the Hamiltonian
Ty = U (=7 =13 cos (60— 0,) (1)
J J

Here n; = —idp, can be thought of as the conjugate (angular) momentum to the variable
6; € [0,27), with [0;,7;] = id; ;. The corresponding partition function can be defined by taking the
trace in the eigen-basis {|0;)} of 0;:

4 =tr <e_’37:‘XY> = /O%Hdej <Q|€_BﬂXY|Q>. (2)

(1.a) Before turning to the quantum case above, consider the classical anisotropic XY model in 2D,
with classical angular variables 6, ; € [0, 27) (indices j and s label the two spatial directions)
and the energy functional

% = —Jx ZCOS(QJ‘”Q — 9j+175) — Jy ZCOS(Hj,s — 6’j,8+1). (3)
7,8 7,8

Write down the integral expression for the classical partition function Z for this model.

(1.b) Now we return to the quantum problem. Perform a Trotterization of Z in Eq. and

introduce identities o
1= [ Lol 4)
J

to derive a formal path-integral expression for Z, without evaluating any matrix-elements at
this point. Use imaginary time steps 67 = /N (later N — o0) and discrete imaginary times
T = SOT.

(1.c) In (1.b) you encounter matrix elements of the form

(O(Ter1) e 5v10(7)). (5)

Simplify these matrix elements by using (f|n) = ¢ and introducing another identity,
= IS bl ()
Joony

and using the Poisson summation formula and Villain approximation:

. 1
Z e=Citind — /% zp:e_fc(eJrQ“P)Z A const X exp {% cos 9] : (7)

n
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(1.d) From your results in (1.c) show for @ € Z that

In particular, discuss the Berry-phase contributions to the path integral and why integer
n € Z ensures that Berry phase terms have no effect.

Problem 2 Charge-density wave instability in the 1D Fermi-Hubbard model

In this problem we study charge-density wave instabilities in the 1D spin-1/2 weakly attractive
(g > 0) Fermi gas described by the Hamiltonian

H=Fo + Hin = ~t > (ely10850 + e ) = g3 i 9)
J

j)o-

(2.a) Describe the ground state of the system at g = 0, and calculate (n;) = >__(n;,). Assume
half-filling and periodic boundaries.

(2.b) The effect of a weak staggered potential V; = —(—1)71} is to induce a staggered charge
density (n;,) = (N0 )ve=0 + (—1)7A;/g. In the interacting model at low temperatures this
charge-density wave order will remain even after the staggered field V} is removed. Derive
the following mean-field Hamiltonian, by ignoring fluctuations (Wz? of the staggered charge

density:
2

. | AZ
Hie = > (-(_1)%]-@]- + 7]) +O(573). (10)
J

(2.c) Describe how the transformation in (2.b) can be obtained as an exact result using a path-
integral, using the Hubbard-Stratonovich trick. Note that the order parameter is real, not
complex.

(2.d) Calculate the excitation spectrum of the mean-field Hamiltonian in the presence of uniform
staggered order A; = A # 0. Note: You may use analogies with BCS formalism and utilize

the spinor field V., = (Cr.o, Chino) -

(2.e) Calculate the free energy F[A] and derive the gap equation for A(T) at finite temperatures
T. Discuss how order can develop spontaneously at low 7" and sketch your result for F'[A]
for different temperatures.
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